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(Nearly) optimal P values for all Bell inequalities
David Elkouss1 and Stephanie Wehner1

A key objective in conducting a Bell test is to quantify the statistical evidence against a local-hidden variable model (LHVM) given
that we can collect only a finite number of trials in any experiment. The notion of statistical evidence is thereby formulated in the
framework of hypothesis testing, where the null hypothesis is that the experiment can be described by an LHVM. The statistical
confidence with which the null hypothesis of an LHVM is rejected is quantified by the so-called P value, where a smaller P value
implies higher confidence. Establishing good statistical evidence is especially challenging if the number of trials is small, or the Bell
violation very low. Here, we derive the optimal P value for a large class of Bell inequalities. What is more, we obtain very sharp upper
bounds on the P value for all Bell inequalities. These values are easily computed from the experimental data, and are valid even if
we allow arbitrary memory in the devices. Our analysis is able to deal with imperfect random number generators, and event-ready
schemes, even if such a scheme can create different kinds of entangled states. Finally, we review requirements for sound data
collection, and a method for combining P values of independent experiments. The methods discussed here are not specific to Bell
inequalities. For instance, they can also be applied to the study of certified randomness or to tests of noncontextuality.
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INTRODUCTION
Local-hidden variable models (LHVM) predict concrete limitations
on the statistics that can be observed in a Bell experiment.1 These
are typically phrased in terms of probabilities or expectation
values. However, in any experiment we can only observe a finite
number of trials, and not probabilities. We thus need to quantify
the statistical evidence against an LHVM given a finite number
of trials.
The traditional way to analyse statistics in Bell experiments is to

compute the number of standard deviation that separate the
observed data from the best LHVM. However, it is now known that
this method has flaws2–5 (see ref. 4 for a detailed discussion). In
particular, we would have to assume Gaussian statistics and
independence between subsequent attempts, allowing for the
memory loophole.2,3 Fortunately, it is possible to rigorously
analyse the statistical confidence even when allowing for memory
as was first done by Gill.6 This is the approach that we follow here.
Instead of bounding the standard deviation, the intuitive idea

behind the rigorous analysis is to bound the probability of
observing the experimental data if nature was indeed governed
by an LHVM. In the language of hypothesis testing, this is known as
the P value, where the null hypothesis is that the experiment can be
modelled as an LHVM (see e.g., ref. 7). Informally, we thus have

P - value ¼ max
LHVM

Pr½data at least as extreme as observed

9experiment is governed by LHVM�: ð1Þ

A small P value can be interpreted as strong evidence against the
null hypothesis. Hence, in the case of a Bell experiment, a small
P value can be regarded as strong evidence against the hypothesis
that the experiment was governed by an arbitrary LHVM.
There is extensive literature regarding the methods for

evaluating the P value in Bell experiments2–16 and dis-
cussions regarding the analysis of concrete experiments and
loopholes.17–32 Previous approaches to obtain such P values

known from the literature can be roughly divided into two
categories. In the first approach, we select a suitable Bell inequality
based on the expected experimental statistics or test data
collected ahead of time. After a Bell inequality is fixed, one can
model the process as a (super-)martingale to which standard
concentration inequalities2,6,9–11,13,15 can be applied. Although this
allows one to obtain bounds for all Bell inequalities relatively
easily, the resulting upper bounds on the P values are generally
very loose. Crucially, this means that a much larger amount of
trials would need to be collected than is actually necessary to
obtain good statistical confidence. Figure 1 illustrates the
significance of using bounds employed in previous works
compared with the bound used here. When making a statement
about all Bell inequalities below, we will also take a martingale
approach using the much sharper concentration offered by
the Bentkus’ inequality.33 For some simple inequalities like
Clauser–Horne–Shimony–Holt (CHSH)34 and Clauser–Horne
(CH),35 tight bounds on the P value have been obtained when
the measurement settings in the experiment are chosen
uniformly, and no event-ready scheme is employed.3,5,16 Such a
bound was first informally derived in,3 and later rigorously
developed by Bierhorst,5 whose approach for CHSH closely
inspires our analysis of Bell inequalities that correspond to win/
lose games below.
The second approach that has been pursued is to combine the

search for a good Bell inequality with a numerical method
adapting to the data.4,12,14 This method is asymptotically optimal
in the limit of many experimental trials. Although conceptually
beautiful, this numerical method can need a rather significant
amount of trials to out-perform even the somewhat loose bounds
given by standard martingale concentration inequalities, and can
hence only be used in regimes where the amount of trials
collected in the experiment is indeed large.
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RESULTS
Here we present a method for analysing the P value for Bell
experiments that is optimal for large classes of Bell inequalities.
This method also applies to event-ready schemes as used in,36 and
can also deal with more complicated forms of event-ready
procedures (heralding) in which different states are created in
each trial (see Figure 2). In particular, it applies to situations in
which we apply a different Bell inequality at each trial depending
on which state is generated. Furthermore, we show how to bound

the P value of all Bell experiments using Bentkus’ inequality, which
is optimal up to a small constant.
Before we can state the concept of a P value more precisely, let us

briefly recall the concept of a Bell inequality (see e.g., (ref. 37) for an
in-depth introduction). For simplicity, we thereby restrict ourselves to
Bell inequalities involving two sites (Alice and Bob), but all our
arguments hold analogously for an arbitrary number of sites. As
illustrated in Figure 3, in a Bell experiment we choose inputs x and y
to Alice and Bob, and can record outputs a and b. (Note that we here
use the more common notation of a and b being outputs, and x and
y being inputs. The roles are reversed in ref. 36) If the experiment
was governed by an LHVM, we could write the probabilities of
obtaining outputs a and b given inputs x and y as

pða; b9x; yÞ ¼
Z

dμðhÞpða9x; hÞpðb9y; hÞ; ð2Þ

where dμ is an arbitrary measure over hidden variables h, which also
include any prior history of the experiment. The locality of the model
is captured by the fact that p(a, b|x, y, h) =p(a|x, h)p(b|y, h) if Alice and
Bob are indeed space-like separated. Throughout, we refer to the
Supplementary Material for a formally precise notation, definitions
and derivation. A Bell inequality then states that for any LHVM

βmin�
X
x;y;a;b

sxyabpða; b9x; yÞ�βmax; ð3Þ

for some numbers sxyab. Evidently, in an experiment we never have
access to actual probabilities p(a, b|x, y). Nevertheless, Bell inequal-
ities turn out to be very useful to establish bounds on the P
value above.
Let us now rephrase this inequality in a way that will make our

approach more intuitive later on. In an experiment we choose
settings with some probability p(x, y); hence, it will be convenient
to define

sab9xy ¼ sxyab=pðx; yÞ: ð4Þ
For the moment, let us assume we have perfect random number
generators, and that we choose the settings x and y uniformly
such that p(x, y) = p(x)p(y) where p(x) = 1/Nx and p(y) = 1/Ny.
The Bell inequality then reads

βmin�
1

NxNy

X
x;y;a;b

sab9xypða; b9x; yÞ�βmax: ð5Þ

Figure 1. Comparison of P value bounds for the CHSH inequality for
values used in the first loophole-free Bell test:36 The three curves show
bounds on the P value for a fixed number of trials n=245 and random
number generators bias τ= 1.08 · 10−5. (refs 53,54) The P value is
computed as a function of the violation S, which is defined as S=8(c/
n− 1/2), where c is the number of wins in the CHSH game. From top to
bottom, the curves show the bound on the P value computed with
Azuma–Hoeffding used in, (ref. 11) McDiarmid’s inequality40 given
in ref. 14 and the upper bound from (20) (with βwin=3/4+τ− τ2 as
shown in Lemma 1 in the Supplemental Material Section II). In the
Delft experiment36 a number c= 196 of wins were observed, giving
S=2.4 and (20) yields P value≈0.039. The dots indicate the P values
predicted by the other bounds. To obtain the same P value with
McDiarmid’s inequality and Azuma–Hoeffding11 the required viola-
tions would be S= 2.54 and S=2.98 (beyond QM), respectively.

Figure 2. A Bell test using an event-ready scheme as proposed by
Bell.1,59 In an event-ready scheme, there is an additional site that we
call the ‘heralding station’ that is space-like separated from Alice and
Bob at the time they receive their inputs (see Figure 3). This
heralding station can be under full control of the local-hidden
variable model. It takes no input but produces a tag t as output. In
the simplest case, t is just a single bit where t= 1 corresponds to
‘yes’ and t= 0 to ‘no’. If yes, then we check the winning condition for
Alice and Bob as in Figure 3. If no, then no record is made (i.e., the
null game is played). In physical implementations such as36 this tag
indicates whether an attempt to produce entanglement was
successful. More complicated scenarios are possible, in which the
tag t takes on more than two-values. Depending on t, a particular
game is played – i.e., scores are computed as dictated by the game
labelled by t. In physical implementations this is interesting when
two different entangled states can be created in the event-ready
scheme, and each state is best for a particular game. An example is
given by CHSH, where different Bell states are created and we play
two different CHSH games with x·y= a⊕ b or x·y= a⊕ b⊕1. Using
both states can improve the time scales at which statistical
confidence can be obtained.

Figure 3. A Bell test involving two space-like separated sites, labelled
Alice and Bob. Alice and Bob receive two randomly chosen inputs
x and y, and produce outputs a and b. We indicate that Alice and
Bob are space-like separated via the dotted line. When testing the
CHSH inequality, for example, the inputs and outputs can be taken
to be single bits x, y, a, b∈ {0, 1}. Viewing CHSH as a non-local game,
the winning condition is that x·y= a⊕ b (we use the shorthand a⊕ b
to denote a+b mod 2). This means that in one trial of the
experiment, we check whether x·y= a⊕ b and if yes we increment
the number c of wins by 1. For all Bell inequalities that are win/lose
games (see 'P values for win/lose games'), we analogously count the
number of wins. General Bell inequalities (see 'General games') can
also be cast as a game in which we do not just decide on whether
Alice and Bob win or lose, but instead assign a score to each correct
answer. In the experiment, we then compute the total score from
the inputs and outputs observed. Our analysis is analogous for Bell
inequalities involving more than two sites.
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The reason why this notation is convenient is because we can now
think of sab|xy as a score that Alice and Bob obtain when giving
answers a and b for questions x and y. We thus adopt a modern
formulation of Bell inequalities in terms of games.37 The statement
that an LHVM governs the experiment then means that Alice and
Bob can only use a local-hidden variable strategy to achieve a high
score in the game. Using this formulation it is clear that the term
in (5) is just the average score that Alice and Bob can hope to
achieve in the next trial. As the Bell inequality holds for any local-
hidden variables, including the history, it is clear that playing the
game n times in succession – i.e., performing n trials of the
experiment – corresponds to a classic example of martingale
sequence (Supplementary Material).
To analyse the experimental data we then proceed as follows:

In trial j, we compute the score sajbj9xjyj that Alice and Bob obtain
for the inputs x and y and outputs a and b we observed in that
trial. By adding all these numbers we compute the total score
c ¼Pn

j¼1 sajbj9xjyj after performing n trials. The P value then
corresponds to

P - value�max
LHVM

Pr½Alice and Bob score CZc9LHVM�: ð6Þ
That is, the probability that Alice and Bob would obtain a score C
that is at least as large (C⩾ c) as the score c actually observed in
our experiment.
Note that the choice for the score function, corresponding to a

particular Bell inequality, is not unique. The only restriction, in order
to define a P value, is that the score needs to be a valid test statistic.
A test statistic is a function that assigns a real value to each possible
experimental outcome. Then, the P value is the probability, under
the null hypothesis, that the value of the test statistic is equal to or
larger than the value obtained from the observed data. There are
many possible score functions that verify this restriction, though we
would argue that the one used here is particularly natural.

P values for win/lose games
We first obtain optimal P values for a certain class of Bell
inequalities, also known as non-local games. In particular, this
includes the Bell inequalities phrased in terms of correlation
functions such as the famous CHSH inequality.34 What sets these
inequalities apart is that the scores sab|xy can take on only two
values, which we associate with winning or losing the game.

Winning probability. To illustrate how Bell inequalities corre-
spond to games, let us consider the CHSH correlation function

〈A0B0〉þ〈A1B0〉þ〈A0B1〉 -〈A1B1〉; ð7Þ
where Ax and By correspond to the observables measured by Alice
and Bob, respectively (see Figure 3). Note that we can write one of
the correlators as

〈AxBy〉 ¼
X
a

pða; b ¼ a9x; yÞ -
X
a

pða; b ¼ a� 19x; yÞ: ð8Þ

In terms of the score function, this means that sa,b|x,y= (−1)a+b+xy.
Note that in any game in which sa,b|x,y can only take on these two
values we can think of the probability that Alice and Bob win for a
particular choice of measurement settings x and y as

pðwin9x; yÞ ¼
X
a; b

sa;b9x;y ¼ 1

pða; b9x; yÞ; ð9Þ

pðlose9x; yÞ ¼
X
a; b

sa;b9x;y ¼ - 1

pða; b9x; yÞ ð10Þ

¼ 1 - pðwin9x; yÞ: ð11Þ

To draw full analogy with the usual representation of non-local
games (see e.g. see ref. 37) we can normalise any score
function for which sa,b|x,y∈ { ± 1} to be 0 and 1 by defining
ŝa;b9x;y ¼ ðsa;b9x;y þ 1Þ=2.
We have

pðwinÞ ¼
X
x;y

pðx; yÞpðwin9x; yÞ; ð12Þ

which is precisely the probability that Alice and Bob win the
non-local game.37 In this language, a Bell inequality now takes on
the form

pðwinÞ�βwin ð13Þ
where βwin denotes the optimal winning probability that can be
achieved using an LHVM. Note that, if necessary, βwin can be
obtained by normalising the given values βmin, βmax appropriately.

Analysing data. The following steps need to be taken to obtain a
P value for an experiment based on a non-local game, where for
simplicity we first consider schemes that are not event-ready.
We refer to Section I of the Supplementary Material for details and
derivation.
First, we determine a bound on the bias of the random number

generator. We will never be able to generate settings x and y
exactly according to the specific distributions p(x) and p(y).
Instead we will generate the settings according to some other
distributions, ~pðxÞ and ~pðyÞ. We are interested in the numbers τA
and τB such that

9pðxÞ - ~pðxÞ9�τA; ð14Þ

9pðyÞ - ~pðyÞ9�τB: ð15Þ
It is clear that for any physical device, these are estimates ideally
supported by a theoretical device model with clearly specified
assumptions.
Second, we need to obtain a bound on the winning probability

conditioned on the history of the experiment. This bound should
use such imperfect random number generators (RNGs) and be
valid for all LHVMs

~pðwin9HistoryÞ ¼
X
x;y

~pðx; yÞpðwin9x; yÞ�~βwin: ð16Þ

Such a bound can be obtained analytically for many inequalities,
including CHSH (see Section II of the Supplementary Material). In
general, a bound on ~βwin can be computed numerically using a
linear program (LP), when re-normalising the score functions
ŝa;b9x;yAf0; 1g as above. We remark that this LP has size that is
exponential in the number of inputs and outputs, but can
nevertheless be solved numerically when these are small enough,
which is typically the case in all experimental Bell tests. It is known
that it is NP-hard to compute the winning probability for arbitrary
non-local games.38

Third, in each of the n experimental trials, we generate inputs
x and y and record outputs a and b. In the end, we count the
number of trials, c, in which Alice and Bob won the game – i.e., the
number of times sab|xy= 1.
Finally, we compute the P value. The interpretation of the

P value is the probability that Alice and Bob win at least c times,
maximised over any LHV strategy.

P - value ¼ max
LHVM

Pr½Alice and Bob win at least c times9LHVM�:
ð17Þ

As we prove in Lemma 3 of the Supplementary Material, for all
LHVMs including arbitrary memory effects,
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P - value�
Xn
i¼c

n
i

� �
~βwin

� �i
1 - ~βwin

� �n - i
: ð18Þ

This bound is a generalisation of (ref. 3) and (ref. 5) that already
had given a binomial upper bound for one particular win/lose
game, the CHSH game, when the RNGs are perfect, and no event-
ready scheme is used.

We emphasise that this bound is tight, whenever (16) is tight.
That is, there exists an LHVM that produces at least c wins with this
probability, and this LHVM does not use any memory. Although a
theoretical analysis is of course necessary to prove (18), it follows
that the memory loophole3 can only be exploited for general Bell
inequalities, where it indeed turns out to be significant. Figure 4
and Figure 5 illustrate this bound for the CHSH and Mermin’s
inequality.39

Event-ready schemes. To illustrate the analysis of event-ready
schemes, let us here focus on the usual case where the tag
(see Figure 2) can be either t= 0 (null game, no entanglement was
made) or t= 1 (one game, one specific state was made). We will
use the term attempt to refer to an attempt to create
entanglement (outcome t= 0 or t= 1) and reserve the word trial
for those in which t= 1. In Section II of the Supplementary
Material, we will discuss more complex versions of event-ready
schemes in which different entangled states can be created, and
we employ a different game for each state.
While it is important that the random numbers are chosen

independently of the tag t, we otherwise allow the LHVM arbitrary
control over the statistics of heralding station. In particular, this
means that the LHVM may use more (or fewer) attempts to realise
c wins on n trials than we actually observed during the
experiment.
Specifically,

P-value ¼ max
LHVM

X
tm Af0;1gm9tm9¼n

Pr½tm9LHVM�

Pr½CZc wins9LHVM; tm�;
ð19Þ

where tm= t1,…, tm, |t
m| denotes the number of ones in tm, and the

maximisation over LHVM includes an optimisation over an arbitrarily
large number of attempts, m, and heralding statistics.
As we will formally show in the Lemma 3 of the Supplementary
Material,

Figure 4. P values for the CHSH inequality with imperfect random
number generators (the bias is τ= 1.08 · 10− 5) in regimes where the
violation is very low, but the number of trials is large. The P values
are computed with (20). The curves show the P value as a function of
the number of trials for fixed violation values: S= 2.08, S= 2.12,
S= 2.16 and 2.20. The dashed horizontal line is set at P value= 0.01.
This line is crossed at n= 10195, n= 4534, n= 2552 and n= 1635
trials, respectively.

Figure 5. P values for the Mermin’s inequality39 with perfect random
number generators. Mermin’s inequality is a tripartite inequality in
which each party has two inputs and two possible outputs. It is an
example of a non-bipartite inequality that has already been violated
in the laboratory.55–57 The three parties Alice, Bob and Charlie
receive three random chosen inputs x, y and z with the promise that
the parity of the inputs is even—that is, that the inputs are limited to
(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 0), and produce outputs a, b and c,
which can also be taken to be bits – that is, x,y,z,a,b,c∈ {0,1}. The
winning condition for Mermin’s inequality is that a⊕b⊕c= x∨ y∨ z.
That is the game is won if the xor of the outputs equals 0 when
(x, y, z)= (0, 0, 0) and if the xor of the outputs equals 1 in
the remaining cases. Hence, we get sabc|xyz= a⊕b⊕c⊕1 when
(x, y, z)= (0, 0, 0) and sabc|xyz= a⊕b⊕c when (x, y, z)≠(0, 0, 0). The
winning probability for this game is p(win)= 3/4,58 but note that in
contrast with CHSH if Alice, Bob and Charlie share entanglement
they can win with probability one. The curves show the P value as a
function of S= 8(c/n− 1/2) for a fixed number of trials n (c is the
number of wins). The three curves show from top to bottom the P
value for n= 150, n= 200 and n= 250. The P values are computed
with the binomial upper bound (18).

Figure 6. P values for CGLMP’s inequality41 with perfect random
number generators. CGLMP is a sequence of bipartite inequalities in
which each party has two inputs and d⩾ 2 possible outputs. This is
an example of a general game within experimental reach.60 The
inequality is

Pbd=2- 1c
k¼0

P
a;x;y 1 - 2k

d - 1

� �ðpða; aþ k þ xy9x; yÞ - pða; a - k
- 1þ xy9x; yÞÞ�2. Let kA0¼ bd=2 - 1c, we can extract from the
inequality the score functions sab9xy ¼ 4 1 - 2k

d - 1

� �
if b= a+k+xy,

sab9xy ¼ - 4 1 - 2k
d - 1

� �
if b= a− k− 1+xy, and sab|xy= 0 in the remaining

cases. The three curves show the P value as a function of the number
of attempts for a fixed average score S ¼ 1

n

Pn
j¼1 sajbj9xjyj . From top to

bottom the curves show the P value for S= 2.15, S= 2.20 and S=2.30.
The P values are computed via Bentkus’ inequality (25).
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P - value ¼
Xn
i¼c

n
i

� �
~βwin

� �i
1 - ~βwin

� �n - i
: ð20Þ

That is, we can formally ignore the non-successful attempts. The
P value only depends on the trials.

General games
Let us now move on to considering general games—that is,
games in which the score functions sab|xy take on more than two
possible values (see Figure 6). As before, we first need to consider
the bias. Our bound will depend on the values of

smax ¼ max
a;b;x;y

sab9xy ; ð21Þ

smin ¼ min
a;b;x;y

sab9xy : ð22Þ

Recall that as sab9xy ¼ sxyab=p x; yð Þ the distribution p(x, y) and hence
also the bias influence smax and smin. Second, we again compute
the total score

c ¼
Xn
j¼1

sajbj9xjyj ; ð23Þ

where xj and yj, and bj and aj are the inputs and outputs used
during trial j, respectively. We then have that

P - value ¼ max
LHVM

Pr½CZc9LHVM�; ð24Þ
where C is the random variable corresponding to obtaining a
particular score using the LHVM strategy. Using the Bentkus’
inequality, we prove in Section III of the Supplementary Material
that

P - value�e

  Xn
i¼bδc

n

i

� �
γ̂ð Þi 1 - γ̂ð Þn - i

!1 - δþbδc

 Xn
i¼dδc

n

i

� �
γ̂ð Þi 1 - γ̂ð Þn - i

!δ - bδc! ð25Þ

where

δ ¼
Xn
i¼1

ci - smin

smax - smin
; ð26Þ

γ̂ ¼ βmax - smin

smax - smin
: ð27Þ

Whenever the Bell inequality is normalised such that smin = 0 and
smax = 1 this becomes

P-value�e

  Xn
i¼bcc

n

i

� �
βmaxð Þi 1 - βmaxð Þn - i

!1 - cþbcc

 Xn
i¼dce

n

i

� �
βmaxð Þi 1 - βmaxð Þn - i

!c - bcc! ð28Þ

where ⌊c⌋ and ⌈c⌉ stand, respectively, for the greatest integer
smaller than c and the smallest integer larger than c.
If we treat a win/lose game as a general game we can also

upper bound the P value by (28). However, if we compare this
formula with (18), we see that we have lost a factor of e. We have
obtained a simple formula that can address general games but it is
not tight. It remains unknown whether or not e is the optimal
prefactor, but it is known that for general games it cannot be
smaller than 2.33

In some cases it is possible to transform a general game into a
win/lose game by postselecting the trials that take the maximum

and minimum value.2,16 In that situation, it would be possible to
apply the tight bounds for win/lose games. Techniques sometimes
referred to as ‘speeding up time’2,28 can analogously be used in
conjunction with this refined bound.
The idea behind this bound is to model an experiment as a

bounded difference supermartingale, where we note that a Bell
inequality is nothing else than the expectation of the score
random variable Cj in trial j conditioned on the history leading up
to that trial. That is,

βmin�E½Cj9History��βmax; ð29Þ

where the expectation is taken over all inputs x and y and outputs
a and b. A (super)martingale is a concept known from probability
theory. A sequence M1, M2, … of random variables is known as a
supermartingale, if the expectation value of the difference
Mn−Mn− 1 conditioned on the history is always non-positive.
Choosing Mj to be a weighted sum of the differencesPn

j¼1 Cj - βmax one can easily obtain such a martingale. The key
aspect of a martingale is that, even though the subsequent
variables are not independent of each other, we observe a
concentration akin to the law of large numbers for processes that
are independent of each other. The prime example is tossing a
coin n times. Indeed, thinking of ‘heads’ as ‘win’ and ‘tails’ as ‘lose’,
we can easily evaluate the probability that we get ‘win’ more than
k times. When a process is a martingale a similar argument holds,
even if the coin can take many values and depend on the history.
Several other martingale bounds have been used in the past.

We have chosen as examples McDiarmid’s inequality40 as
given in ref. 14

P - value�
 

smax - βmax

smax - c=n

� � smax - c=n
smax - smin βmax - smin

c=n - smin

� � c=n - smin
smax - smin

!n

ð30Þ

and Azuma–Hoeffding as used in ref. 11 for CHSH

P - value�exp - n
ðc=n - βmaxÞ2

2d2

 !
ð31Þ

where d=max {|βmax− smin|, |βmax− smax|}.
We provide an example of the application of these three

bounds for the Collins–Gisin–Linden–Massar–Popescu inequality41

in Figure 7.

Figure 7. P values for Collins–Gisin–Linden–Massar–Popescu's
(CGLMP) inequality41 with perfect random number generators.
From top to bottom the curves show the P value for n= 500 trials
computed with Azuma–Hoeffding, Mcdiarmid and Bentkus’
inequalities. The inequalities are given by (31), (30) and (25).
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DISCUSSION
Before conducting the experiment
To ensure sound data collection, there are several important
considerations to make before the experiment takes place. These
are standard in statistical testing, and in essence say that the rules
on how the statistical analysis is performed are decided
independent of the data. This can be achieved by establishing
those rules before the data collection starts. First, we choose a
Bell inequality. Not all Bell inequalities lead to the same statistical
confidence. In 'Selecting a Bell inequality' we discuss methods for
obtaining a good one. Although there may be future analyses that
allow a partial optimisation over Bell inequalities using the actual
experimental data, we emphasise that the procedure above
assumes that a fixed inequality has been chosen ahead of time.
Second, there are two ways to deal with imperfect random
number generators, and a choice should be made as discussed in
'How to deal with imperfect RNGs'. Third, we assume that the
number of trials to be collected is independent of the data.
This means that we do not decide to take another few trials if the
P value is not yet low enough for our liking, a practice also known
as P value fishing in statistics. There are ways to augment the
analysis42 to safely collect more data in some specific instances,
but this brings many subtleties. A number of trials, n, can be
determined from the expected violation given prior device
characterisation, aiming for a particular P value.

How to deal with imperfect RNGs
From the discussions above, it becomes clear that there are two
ways to deal with imperfect RNGs. The first is of interest in
win/lose games. If there is a bias τ, then the winning probability
(12) simply increases. This means that when we perform an
experiment based on a win/lose game in which we use an
imperfect RNG, the game remains win/lose and the bound in (18)
still applies. As this is a simple binomial distribution, without any
additional factor e this is desirable if the bias is small.
However, we saw from the analysis of general games that there

is a second way. When considering a general Bell inequality (3), we
make no statements about the probabilities of choosing settings
p(x, y) = p(x)p(y). Starting from a scoring function sxyab we can define
sab9xy ¼ sxyab=p x; yð Þ to introduce an explicit dependence on the
input distribution p(x, y) of our choosing. Using RNGs with a bias
then merely affects p(x, y) and thus the maxima and minima of the
scoring functions sab|xy that enter into the bound given in (25). It is
crucial to note that when defining sab|xy as above, a win/lose
game can now turn into a general game. That is, we will no longer
have that the scoring functions sab|xy take on only two values. This
means that we have to use the general bound (25) carrying the
additional factor e, as opposed to (18).
How we deal with imperfect RNGs thus depends: if we start with

a win/lose game, and if the bias is small, it is typically
advantageous to preserve the win/lose property of the game
and derive a new winning probability as a function of the bias. If,
however, the bias is very large, it can be advantageous to sacrifice
the win/lose property and adopt the analysis for general games. If
the game was not win/lose to begin with, we always adopt the
second method.

Selecting a Bell inequality
One of the main objectives of a Bell experiment is to quantify the
evidence against an LHVM; hence, ideally one would like to
choose a game that would yield the lowest P value for a fixed
number of trials. The optimisation of games with this objective is a
non-trivial task. A reasonable alternative that one can use as
heuristic is to maximise the gap between the expected score
achievable in the experiment and the expected score that an
LHVM can attain. In other words, we are looking for a Bell

inequality for which the violation we can observe is as large as
possible. To find such an inequality, standard linear programming
methods can be used (see e.g., ref. 37).
To apply them we assume that a reasonably good guess is

available as to what the probabilities p(a, b|x, y) are in the
experiment. Such a guess can be made by either analysing data
collected prior to the Bell experiment and approximating
probabilities by relative frequencies or by having sufficient
confidence in the theoretical model that describes the experiment
and calculating the probabilities from this model.
Suppose that in the estimation process we find some estimates

of p(a, b|x, y). If such probabilities could be realised by an LHVM,
we could write them as a mixture of deterministic local strategies.
To make this precise, let λ= (a1, …, a|X|, b1, …, b|Y|) denote a
deterministic strategy in which Alice and Bob give outputs ax
and by for inputs x= {1, …, |X|} and y∈ {1, …, |Y|}. In terms of a
probability distribution, this would correspond to a distribution
dλ(a, b|x, y) such that dλ(a, b|x, y) = 1 if and only if a= ax and
b= by as indicated by the vector λ, and dλ(a, b|x, y) = 0
otherwise. A behaviour, that is distributions p(a, b|x, y), is local if
and only if

pða; b9x; yÞ ¼
X
λ

qλdλða; b9x; yÞ ð32Þ

where the sum is taken over all |X||A||Y||B| possible λ,37 where |A|
and |B| denote the number of possible outputs for Alice and Bob,
and

8λ; qλ > 0; and
X
λ

qλ ¼ 1: ð33Þ

We note that one can test whether such qλ exists—i.e., whether
the behaviour is local – using a linear program.43,44 The dual of
this linear program can be used to find a Bell inequality that
certifies that a behaviour p(a, b|x, y) is not local.37 One can easily
adapt this linear program to search for an inequality that achieves
a high violation. Specifically,

maximise Violation ¼ P
x;y;a;b

sxyab pða; b9x; yÞ - SP
x;y;a;b

sxyabdλða; b9x; yÞ�S; 8λ ð34Þ

0�sxyab�1; 8x; y; a; b; ð35Þ
where p(a, b|x, y) and dλ(a, b|x, y) are givens, and we optimise over
sabxy (see ref. 37 for details). Note that the second constraint means
that for every LHVM we have a Bell inequality in which βmax = S,
and the difference V is precisely the violation we achieve when
normalising the score functions to lie in the interval [0, 1], which
can be done without loss of generality.
It is clear from the discussion above that it can be to our

advantage to search for a win/lose game, rather than a general
game, as the P values for such games are sharper. This can be
done by optimising over score functions in which sxyabA 0; 1f g. This,
however, is now an integer program45 rather than a linear
program,46 which is in general NP-hard to solve.45,47 Nevertheless,
this may be feasible for the small number of inputs and
outputs used in any experimental implementation, and heuristic
methods exist.

Combining independent experiments
Suppose that a series of n experiments is run independently.
Each experiment could correspond to completely different
settings, Bell inequalities and so on. Associated with each
experiment we obtain a series of P values corresponding to the
probability that each of them was governed by an LHVM: pið Þni¼1.
In this situation, it is possible to take all the P values associated
with each one of the individual experiments and obtain a
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combined P value. One such method is Fisher’s method.48,49 With
Fisher’s method the combined P value is given by the tail
probability of χ22n, a chi-squared distribution with 2n degrees of
freedom:

P - value ¼ Pr χ22nZ - 2 log
Yn
i¼1

pi

 !
ð36Þ

The right-hand side of this equation can be easily evaluated
numerically. However, it can be shown that the tail probability of
χ22n accepts the following closed expression:

Pr χ22nZ2x
� � ¼ e - x

Xn - 1
i¼0

xi

i!
ð37Þ

where we can choose x ¼ - log
Qn
i¼1

pi .

However, we make no claim of optimality regarding the
combined P value. There is rich literature on methods for
combining P values,50 and depending on the concrete situation
a different choice should be made.

Conclusions
We have shown how to derive (nearly) optimal P values for all Bell
inequalities that can easily be applied to evaluate the data
collected in experiments. A suitable Bell inequality can be found as
outlined above; however, it would be interesting to combine this
method with the numerical search for inequalities in.4,12,14 The
latter can adaptively find the best way to discriminate between
LHVMs and theories like quantum mechanics that go beyond
local-hidden variables that is asymptotically optimal but requires a
significant amount of data to train.
We note that there exist many ways to extend the methods

presented here to deal with specific situations at hand—for
example, by conducting multiple experiments in succession and
using data from prior runs to find more suitable Bell inequalities in
the next instance.
We emphasise that the methods outlined here can be used to

test other models than LHVMs. It is clear from the proof that only
the winning probability in (13), or the expectation value (29),
depends on the model to be tested. The argument that extends
these bounds for a single trial to a bound on the P value for the
entire experiment allowing arbitrary memory in the devices,
however, does not depend on the model tested. In particular, this
means that any theories that predict bounds of the form (13) and
(29) are excluded with the same bound on P value. This also
makes it apparent how one can extend the analysis to refute
models that are more powerful than an LHVM. For example, Hall51

defined and quantified interesting relaxations of an LHVM, with
reduced free will, or where some amount of signalling is allowed.
It is straightforward to adapt the analysis of51 to derive bounds on
(13) and (29) to subsequently obtain a P value for testing such
extended models. Note that as Alice and Bob obtain an advantage
by allowing models such as51—i.e., they are allowed more
powerful strategies—they can achieve a higher score in the
game. This implies that concrete scores will result in higher P
values and lower confidence.
Furthermore, although we focussed the discussion on tests of

Bell inequalities, our methods can also be applied to the study of
certified randomness as in, refs 11,13,52 or more generally to tests
of, e.g., non-contextual models that can be phrased as one player
games.
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