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We investigate entropic uncertainty relations for two or more binary measurements, for example, spin- 1
2

or polarization measurements. We argue that the effective anticommutators of these measurements, i.e.,
the anticommutators evaluated on the state prior to measuring, are an expedient measure of measurement
incompatibility. Based on the knowledge of pairwise effective anticommutators we derive a class of entropic
uncertainty relations in terms of conditional Rényi entropies. Our uncertainty relations are formulated in terms
of effective measures of incompatibility, which can be certified in a device-independent fashion. Consequently,
we discuss potential applications of our findings to device-independent quantum cryptography. Moreover, to
investigate the tightness of our analysis we consider the simplest (and very well studied) scenario of two
measurements on a qubit. We find that our results outperform the celebrated bound due to Maassen and Uffink
[Phys. Rev. Lett. 60, 1103 (1988)] and provide an analytical expression for the minimum uncertainty which also
outperforms some recent bounds based on majorization.
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I. INTRODUCTION

Uncertainty relations tell us that quantum mechanics is
inherently nondeterministic, i.e., that there exist experiments
whose outcomes cannot be predicted with arbitrary precision.
In the usual scenario we consider two distinct measurements,
giving rise to random variables X and Y , respectively. The
statement is of the form “if the two measurements are
incompatible then it cannot be the case that both X and Y

are close to being deterministic” and the statement must hold
regardless of the state of the system prior to measuring. In
other words, X or Y (or both) must be at least somewhat
unpredictable, that is, random. To make this statement rigorous
we need three ingredients: a measure of incompatibility, a
measure of uncertainty, and a nontrivial relation between the
two.

The study of uncertainty relations began when Heisen-
berg [1] and (more formally) Kennard [2] noticed that
it is impossible to prepare a particle whose position and
momentum are sharply peaked: The more localized a particle
is, the more variable its momentum becomes, and vice versa.
More generally, Robertson [3] showed that uncertainty might
arise whenever two observables do not commute. Let ρ be
the state of the system prior to the measurement. For an
operator A, denote the expectation value of that operator by
〈A〉 = tr(Aρ). For operators A and B, let [A,B] = AB − BA

be the commutator of A and B and let 〈[A,B]〉 be the effective
commutator. Robertson’s relation reads

σAσB � 1
2 |〈[A,B]〉|,

where σX is the standard deviation of X, σ 2
X = 〈X2〉 − 〈X〉2.

Note that this relation applies to both continuous-outcome
(e.g., position or momentum) and discrete-outcome (e.g., spin
or polarization) measurements.

In 1930 Schrödinger [4] proved a stronger relation:

σ 2
Aσ 2

B �
∣∣ 1

2 〈{A,B}〉 − 〈A〉〈B〉∣∣2 + ∣∣ 1
2 〈[A,B]〉∣∣2

,

*j.kaniewski@nus.edu.sg

where {A,B} = AB + BA is the anticommutator of A and B

and 〈{A,B}〉 is the effective anticommutator.
These early uncertainty relations are interesting from the

foundational point of view but they suffer from two problems:
(a) they are not tight in some important cases (e.g., for spin-
1
2 particle with A = σZ , B = σX and ρ = 1

2 the right-hand
side is 0, despite both outcomes being maximally random,
σA = σB = 1) and (b) their applications are limited because
the standard deviation is not always a suitable measure of
uncertainty.

To find uncertainty relations with applications in informa-
tion theory and cryptography, entropies were employed as
measures of uncertainty. Usually one considers a scenario
in which we have a certain number of measurements and
perform one of them uniformly at random. If we store the
label of the measurement in K and the measurement outcome
in X we obtain a joint probability distribution PXK . Entropic
uncertainty relations are simply lower bounds on a particular
conditional entropy, H (X|K), evaluated on the probability
distribution PXK .

The first entropic uncertainty relation was proved for
position and momentum of an infinite-dimensional system
in 1975 [5,6]. The first result for arbitrary rank-1 projective
measurements performed on a finite-dimensional system was
derived by Deutsch [7] and improved by Maassen and
Uffink [8]. The latter state that for two projective rank-
1 measurements on a d-dimensional system, described by
measurement eigenvectors {|xj 〉}j∈[d] and {|yj 〉}j∈[d], we have

H (X|K) � − 1
2 log2 c,

where H (X|K) is the conditional Shannon entropy and c :=
maxj,k |〈xj |yk〉|2 is the overlap of the two measurements
(note that this is independent of the state ρ prior to mea-
surement). Entropic uncertainty relations became an active
topic of research (see, for example, [9–12]) since entropies
give operational meaning to the notion of uncertainty and
thus find applications in many information processing and
cryptographic tasks (see Ref. [13] for a recent review).
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The authors of Ref. [14] considered a set of binary observ-
ables that pairwise anticommute (as operators) and they found
that such measurements give rise to strong entropic uncertainty
relations. While the case of perfect anticommutation is well
understood, nothing is known about the case of partial (or
approximate) anticommutation. This is a significant drawback
since for most applications we need uncertainty relations
which are robust against small perturbations. If we were
interested in noneffective measures of anticommutation (e.g.,
the norm of the anticommutator) uncertainty statements would
follow directly from standard, overlap-dependent uncertainty
relations. However, for effective measures (e.g., effective
anticommutator) the connection between the overlap and anti-
commutation is no longer valid (as explained in Appendix B)
so new methods must be developed.

II. RESULTS AND OUTLINE

In this paper we prove uncertainty relations for an arbitrary
set of binary observables (as usual we associate their outcomes
with values ±1). Given the knowledge of their pairwise
effective anticommutators [cf. Eq. (1)] we derive lower bounds
on conditional Rényi entropies [cf. Eqs. (8) and (9)] in two
steps. In the first step we show that fixing the effective
anticommutators imposes a simple geometric constraint on the
expectation values of these observables (note that a probability
distribution with two outcomes is fully characterized by its
expectation value). In the second step we show that the
constraint on expectation values implies a lower bound on
entropic uncertainty.

Our relations have two desirable features. First, our measure
of incompatibility is effective (state-dependent) and it can
be certified experimentally based on ideas of Mayers and
Yao [15,16], which leads to device-independent uncertainty.
(Note that noneffective measures, like the overlap commonly
used in entropic uncertainty relations, cannot be certified
and so we can employ these relations only when the device
is trusted.) Second, we can treat any (finite) number of
observables. This is because we do not rely on a standard
technique based on a reduction to qubits (Jordan’s lemma),
which only works for two observables, but instead use the full
anticommutation structure of the set of observables.

We compare our results with existing bounds for the case of
the Shannon entropy of two measurements. In particular, we
improve on the celebrated Maassen-Uffink bound by providing
an analytical bound that is strictly stronger for all nontrivial
overlaps. We conclude the paper with a discussion of potential
applications to device-independent quantum cryptography.

III. TECHNIQUES

A binary measurement consists of two positive semidefinite
operators, F+,F− � 0, that add up to identity F+ + F− =
1. If we associate the outcomes with values ±1 then the
measurement can be written compactly as a binary observable,
A = F+ − F−, which satisfies −1 � A � 1.

Suppose we are given a state, ρ, and a set of M binary
observables, {Aj }j∈[M]. Define the effective anticommutator

between the j th and the kth observable as

εjk = 〈{Aj ,Ak}〉
2

= tr({Aj,Ak}ρ)

2
(1)

and note that εjk is real and |εjk| � 1. Let T be the
anticommutation matrix, [T ]jk = εjk . For ease of presentation
in the main paper we focus on projective observables, for which
[T ]jj = 1 for all j . For a more general proof, which also covers
generalized measurements, please refer to Appendix C. Let
gj = 〈Aj 〉 be the expectation value of the j th observable. For
binary observables the probability distribution of interest (as
described in the introduction) can be written as

Pr[X = x,K = k] = 1

M

1

2
[1 + (−1)xgk]. (2)

The conditional Rényi entropy [17] of order α > 1 is defined
as

Hα(X|K) := α

1 − α
log2

∑
k

pk

(∑
x

pα
x|k

)1/α

(3)

while the Shannon entropy equals H (X|K) :=
limα→1 Hα(X|K). The goal is to prove lower bounds
on Hα(X|K) and H (X|K) (this is what we want) evaluated on
the joint probability distribution (2) based on the knowledge
of T (this is what we are given) and we do it in two steps.
First, we show that T imposes a geometric condition on
the expectation values of the observables. Then, we use
this geometric condition to prove lower bounds on entropic
uncertainty.

Let g = (g1,g2, . . . ,gM ) be a (column) vector composed of
expectation values. Clearly, g lies inside the (±1)-hypercube,
g ∈ [−1,1]M , but we show that T imposes an extra geometric
constraint on g. For this purpose, let a be an arbitrary real unit
vector, a ∈ [−1,1]M , and let K = ∑

j ajAj . Then

K2 = 1 + 1

2

∑
j �=k

ajak{Aj ,Ak}.

For arbitrary operators the Cauchy-Schwarz inequality ensures
that [tr(X†Y )]2 � tr(X†X) · tr(Y †Y ). By setting X = K

√
ρ

and Y = √
ρ we find that

aTggTa � aTT a.

Since this inequality holds for all choices of a, it is equivalent
to the operator inequality

ggT � T . (4)

This constraint admits an appealing geometrical interpretation:
The matrix T defines an ellipsoid within the hypercube and
the constraint restricts the vector g to lie inside that ellipsoid
(see Fig. 1 for an example).

Moreover, an extension of the construction from Ref. [18]
(Appendix C) shows that this characterization is tight: A vector
of expectation values g and an anticommutation matrix T are
compatible if and only if (iff) Eq. (4) holds.

To find lower bounds on a particular entropy (Hα(X|K) or
H (X|K)) we just need to minimize it over the allowed set of
expectation values. Note that for the probability distribution (2)
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FIG. 1. (Color online) The allowed expectation values of two
observables with a fixed effective anticommutator, ε ∈ {0,0.5,0.9}.
For ε = 0 we get a circle, which becomes gradually elongated towards
the corners as ε increases. Note that ε > 0 (ε < 0) forces the two
expectation values to be correlated (anticorrelated), which results
in an ellipse lying along the primary (secondary) diagonal. The
deterministic points, corresponding to the corners, are only allowed
for |ε| = 1.

the expression (3) simplifies to

Hα(X|K) = α

1 − α
log2

∑
k wα(gk)

M
,

where wα(g) = [( 1+g

2 )α + ( 1−g

2 )α]1/α . Now, the task is to
minimize Hα(X|K) over the ellipsoid, or, equivalently, to solve

max:
∑

k

wα(gk) subject to ggT � T .

Unfortunately, this seemingly natural task turns out to be rather
difficult even in the simplest cases. Therefore, we consider a
relaxation of the problem, in which we optimize over a sphere
whose radius is determined by the largest semiaxis of the
ellipsoid, denoted by r (see Fig. 2 for an example). Note that
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FIG. 2. (Color online) The spherical relaxation for two measure-
ments with ε = 0.3. Optimization is performed over a circle (light
color) rather than an ellipse (dark color). Points A and B are the
optimal solutions to the relaxed optimisation problem (6) for convex
(α ∈ (1, 3

2 ]) and concave (α ∈ [2,∞)) functions, respectively.

r = ||T ||, the spectral norm of T .

max:
∑

k

wα(gk) subject to g ∈ [−1,1]M,
∑

k

g2
k � r. (5)

Note that we added the hypercube constraints explicitly since
they are not implied by the relaxed, spherical constraint. This
approach has the advantage that it compresses the whole
anticommutation matrix into just one number — its norm.
More important, the relaxed problem can be solved analytically
for most values of α as explained below.

Since neither the objective function nor the constraints of
the optimization problem (5) depend on the sign of gk we
can restrict ourselves to non-negative expectation values. This
allows us to define tk = g2

k and the problem becomes

max:
∑

y

wα(
√

tk) subject to t ∈ [0,1]M,
∑

k

tk � r. (6)

Since the objective function is monotone we can assert that the
optimal solution satisfies

∑
k tk = r .

For α ∈ (1, 3
2 ] the function wα(

√
t) is convex in t

(Appendix D) and since the maximum of a convex function
over a convex set is achieved at an extremal point, the optimal
value must be achieved at an assignment of the form

tk =
⎧⎨
⎩

1 for 1 � k � 	r
,
r − 	r
 for k = 	r
 + 1,

0 otherwise.
(7)

Hence, for α ∈ (1, 3
2 ] we arrive at the following bound, which

constitutes our main result:

Hα(X|K) � Hα(Y |K), where

Pr[Y = y,K = k] = 1

M

1

2
[1 + (−1)y

√
tk ] (8)

and tk refers to the optimal assignment [Eq. (7)]. This can be
extended to the Shannon entropy by taking the limit of α → 1
yielding H (X|K) � H (Y |K).

For α ∈ [2,∞) the function wα(
√

t) is concave and since it
is also symmetric the minimum is achieved for tk = r

M
for all

k. Therefore, we have

Hα(X|K) � Hα(Y ), where

Pr[Y = y] = 1

2

(
1 + (−1)y

√
r

M

)
. (9)

Note that in both cases these bounds are functions of M and r

only and, hence, can be computed easily.

IV. COMPARISON WITH EXISTING BOUNDS

Although effective anticommutators play a central role in
our work, it is more common to state uncertainty relations in
terms of the overlap. Let us consider two projective rank-1
measurements on a qubit and the conditional Shannon entropy
that arises. We look for bounds of the form H (X|K) � q(c)
and, as stated in the introduction, the celebrated result of
Maassen and Uffink [8] reads

qMU(c) = − 1
2 log2 c.

While this is known to be tight for the extreme values of
the overlap, c ∈ { 1

2 ,1}, it is not tight in the interior (see,
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FIG. 3. (Color online) Comparison of various lower bounds on
H (X|K) as a function of the overlap c. The quantity qac(c) is defined
in Eq. (10).

e.g., [19,20]). It turns out that our results might be applied
to this case to give an improvement for all intermediate
values of c. We take advantage of the fact that for projective
measurements on a qubit there is a one-to-one mapping
between the effective anticommutator and the overlap, c =
(1 + |ε|)/2. Therefore, we can write our bound (8) as a function
of the overlap

qac(c) = 1

2
h

(
1 + √|ε|

2

)
= 1

2
h

(
1 + √

2c − 1

2

)
, (10)

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary
entropy. In Fig. 3 we compare these bounds with a bound
recently developed using a majorization technique [21,22]
(and very recently [23]), denoted qmaj(c), and the largest state-
independent lower bound, denoted qopt(c). (For c � 0.7 there
is an analytic expression for qopt due to Ghirardi et al. [19],
while for c � 0.7 one needs to resort to numerics.)

V. APPLICATIONS TO QUANTUM CRYPTOGRAPHY

Recently, in the context of quantum cryptography, there
has been a lot of interest in self-testing [15,16,24] and
device-independent security [25]. In self-testing the task is
to characterize the internal working of a device by analyzing
observed correlations alone. This characterization then allows
proof of security of a cryptographic protocol executed using
that device. (The term device-independent comes from the fact
that we did not assume how the device works but we deduced
it from the statistics.)

Uncertainty relations constitute an important ingredient
of many device-independent security proofs (see Ref. [26]
for an example in quantum key distribution and Ref. [27]
for a very recent example in randomness expansion). An
interesting development would be to prove device-independent
security for two-party cryptography, for example, in the
bounded [28,29] or noisy [30,31] storage models. (In the case
of trusted devices, security based on uncertainty relations was
proved in the bounded storage model [32] and for relativistic
bit commitment [33].)

Our results fit into this framework since we derive
uncertainty from effective anticommutators, which can be
certified experimentally. To certify effective anticommutation
between two observables it is enough to observe Clauser-
Horne-Shimony-Holt (CHSH) violation (see, e.g., Ref. [34]).
To extend this result to multiple observables we resort to
a game proposed by Slofstra [35], which can be seen as
a combination of multiple CHSH games in which one of
the parties is not told which particular subgame they are
playing (see Appendix E for details). This testing procedure
produces bounds on the effective anticommutator of every
pair of observables, which implies an upper bound on the
norm of the anticommutation matrix, r . Then, we use Eqs. (8)
and (9) to obtain explicit entropic bounds, hence leading us to
device-independent uncertainty.

VI. CONCLUSION

Drawing from early uncertainty relations we have shown
that it is possible to derive entropic uncertainty relations
for binary observables from effective anticommutation. The
effective anticommutators seem to be natural objects to study
and give rise to strong uncertainty relations. Moreover, since
they can be certified (self-tested) our uncertainty relations
are expected to have applications in device-independent
cryptography. Investigating these potential applications is the
most interesting open question arising from our research.
Another more foundational line of research could investigate
whether our approach can be extended to allow for quantum
side information.
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APPENDIX A: PRELIMINARIES

For an integer n, let [n] = {1,2, . . . ,n}. Let H denote a
finite-dimensional Hilbert space of dimension d = dim H and
letH(H) denote the set of Hermitian operators acting on H. Let
S(H) denote the set of quantum states on H: ρ ∈ S(H) ⇐⇒
ρ ∈ H(H),ρ � 0, tr ρ = 1. A binary observable, � ∈ H(H),
is a Hermitian operator which satisfies −1d � � � 1d , where
1d denotes the identity matrix of dimension d.

Let {�j } be a set of Hermitian, traceless, anticommuting
observables acting on a d-dimensional Hilbert space:

�j = �
†
j , tr �j = 0 and {�j ,�k} = 2δjk1d .

Note that such a set can always be found, regardless of the
number of observables required, as long as the dimension
is high enough (e.g., by Jordan-Wigner transformation; see
Ref. [14] for details). Let us first show that if we build a
quantum state out of these operators then a simple Bloch-
sphere-type condition holds.
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Lemma A.1. Let x be a real vector. The operator

ρ = 1

d

⎛
⎝1d +

∑
j

xj�j

⎞
⎠

corresponds to a valid quantum state iff
∑

j x2
j � 1.

Proof. Clearly, ρ is Hermitian and of unit trace, hence, we
just need to verify that it is also positive semi-definite. Let F =∑

j xj�j and note that F 2 is proportional to 1d . Therefore, F

can be written as

F =
⎛
⎝∑

j

x2
j

⎞
⎠

1/2

(2P − 1d ),

where P is a d/2-dimensional projector and tr P = d/2
(note that this implies that d must be even). Clearly,
ρ � 0 is equivalent to 1d + F � 0, which is satisfied iff∑

j x2
j � 1. �

APPENDIX B: ANTICOMMUTATION VS THE OVERLAP

In this section we show that the overlap is related to the
norm of the anticommutator. We also show that if we make the
measures effective (i.e., state dependent) this connection is no
longer valid and the two quantities can be vastly different.

For two projective, binary measurements {P0,P1} and
{Q0,Q1} their overlap is defined as

c = max
b,b′

||PbQb′ ||,

where || · || denotes the Schatten ∞ norm. By Jordan’s lemma
the measurement operators can be simultaneously block
diagonalized

Pb =
⊕

k

P k
b and Qb =

⊕
k

Qk
b

and the blocks are of dimension at most 2. If the kth block is
trivial (dimension 1) then one of the projectors is rank 1, while
the other is zero: e.g., P k

0 = |0〉〈0 |,P k
1 = 0 and similarly for

Q0,Q1. If the block is of dimension 2 then each of the four
projectors is rank 1:

P0 = |p0〉〈p0 |, P1 = |p1〉〈p1 |,
Q0 = |q0〉〈q0 |, Q1 = |q1〉〈q1 |,

where 〈p0 |p1〉 = 〈q0 |q1〉 = 0 and

|p0〉〈p0 | + |p1〉〈p1 | = |q0〉〈q0 | + |q1〉〈q1 | = Rk

and Rk is the projector on the two-dimensional support of
the kth block. The corresponding observables A = P0 − P1,
B = Q0 − Q1 are block diagonalized in the same way to give

A =
⊕

k

Ak and B =
⊕

k

Bk

and it is easy to verify that for both types of blocks we have

max
b,b′

∥∥P k
b Qk

b′
∥∥ = 1

2 + 1
4‖{Ak,Bk}‖.

Taking maximum over the blocks leads to a rela-
tionship between the overlap and the norm of the

anticommutator:

c = 1
2 + 1

4‖{A,B}‖.
Without any knowledge of the state no further improvement
is possible. However, if we know the state we can refine our
measures by making them effective (or state-dependent). This
is easy in case of the anticommutator by defining

ε = 1
2 tr({A,B}ρ).

In the case of the overlap the extension is less obvious. Let
us consider a simplified version of the quantity proposed in
Ref. [34]:

c∗ =
∑

k

tr(Rkρ) max
b,b′

∥∥P k
b Qk

b′
∥∥,

which is a weighted average of the blockwise overlaps. Now,
we want to show that these two quantities can be very different.
Consider a system of dimension 4, where the measurements
are

P0 = |0〉〈0| + |2〉〈2|, P1 = |1〉〈1| + |3〉〈3|,
Q0 = |0〉〈0| + |3〉〈3|, Q1 = |1〉〈1| + |2〉〈2|,

and the state is ρ = 1
2 (|0〉〈0 | + |2〉〈2 |). It is easy to verify that

c∗ = 1, since in each of the two blocks the measurements are
actually the same (up to relabelling). In fact, any definition of
effective overlap based on the block-diagonal form should give
us full overlap. On the other hand, the effective anticommutator
equals ε = 0. Hence, the overlap approach shows no incom-
patibility, while according to the effective anticommutator the
observables are maximally incompatible. The reason for these
seemingly contradictory conclusions is that the definition of
the effective overlap implicitly takes into account the subspace
information. The effective anticommutator does not have
access to the subspace information and this ignorance results
in uncertainty. This also demonstrates why the uncertainty
guarantees based on the effective anticommutator might not
hold if one conditions on additional classical information (in
this case the subspace information).

APPENDIX C: THE ELLIPSOID CONDITION

Suppose we are given a state, ρ, and a set of M binary
observables, {Aj }j∈[M]. Let g be the (column) vector of ex-
pectation values, gj = 〈Aj 〉, and let T be the anticommutation
matrix

Tjk =
{〈A2

j 〉 if j = k,

〈{Aj ,Ak}〉/2 otherwise.

Lemma C.1. Any valid combination of g and T satisfies
ggT � T .

Proof. Let a be an arbitrary real unit vector, a ∈ [−1,1]M ,
and let K = ∑

j ajAj . Then

K2 =
∑

j

a2
j A

2
j + 1

2

∑
j �=k

ajak{Aj ,Ak}.

Consider Hermitian operators X = K
√

ρ and Y = √
ρ.

Note that tr(X†Y ) = tr(Kρ) = ∑
j ajgj = aTg, tr(X†X) =

tr(K2ρ) = aTT a and tr(Y †Y ) = tr(ρ) = 1. Therefore, the
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Cauchy-Schwarz inequality, [tr(X†Y )]2 � tr(X†X) tr(Y †Y ),
implies that

aTggTa � aTT a.

Since this inequality holds for all choices of a, it is equivalent
to the operator inequality

ggT � T . �
Moreover, the following lemma shows that this characteri-

zation is tight.
Lemma C.2. Let T be a M × M real, positive semidefinite

matrix and let g ∈ [−1,1]M be a real vector such that ggT � T .
Then, there exists a quantum state and measurements that
give g as the vector of expectation values and T as the
anticommutation matrix.

Proof. Since T � 0 there exists a M × r real matrix R,
such that RRT = T and r = rk(T ). Let the j th observable be

Aj =
r∑

i=1

Rji�i,

which implies that {Aj,Ak} = 2Tjk1d . Therefore, the anticom-
mutation matrix is reproduced correctly independent of the
state.

Consider an operator defined as

ρ = 1

d

⎛
⎝1d +

r∑
j=1

xj�j

⎞
⎠ .

It is easy to verify that if ρ corresponds to a valid state then the
resulting vector of expectation values equals g = Rx. Since
rk(R) = r , R has a left inverse, namely a r × M matrix Q

such that QR = 1r , and x can be calculated as x = Qg. To
verify that ρ corresponds to a valid state we must check that
xTx � 1 which follows directly from the fact that

xxT = QggTQT � QT QT = QRRTQT = 1r ,

where we used the assumption ggT � T . �
As a corollary we obtain a lower bound on the dimension

of the system necessary to reproduce a particular choice of g

and T .

Corollary C.1. To reproduce correctly g and T it is suffi-
cient to use r = rk(T ) anticommuting observables which can
be realized in dimension d = 2� r−1

2 �.

APPENDIX D: CONVEXITY AND CONCAVITY OF wα(
√

t)

For completeness recall the definition of wα(x) for x ∈
[−1,1]:

wα(x) =
[(

1 + x

2

)α

+
(

1 − x

2

)α]1/α

.

Lemma D.1. The function wα(
√

t) for t ∈ [0,1] is convex
for α ∈ (1, 3

2 ] and concave for α ∈ [2,∞).
Proof. Let us write wα(

√
t) as

wα(
√

t) = 1
2 [gα(t)]1/α,

where gα(t) = (1 + √
t)α + (1 − √

t)α.

Calculating the derivatives gives

d

dt
wα(

√
t) = 1

2α
gα(t)(1−α)/αg′

α(t),

d2

dt2
wα(

√
t) = 1 − α

2α2
gα(t)(1−2α)/α[g′

α(t)]2

+ 1

2α
gα(t)(1−α)/αg′′

α(t)

= gα(t)(1−2α)/α

2α2
[(1 − α)[g′

α(t)]2 + αgα(t)g′′
α(t)].

Therefore, what we are interested in is the sign of

hα(t) = 1 − α

α2
[g′

α(t)]2 + 1

α
gα(t)g′′

α(t). (D1)

It is easy to verify that

g′
α(t) = α

2
√

t
[(1 + √

t)α−1 − (1 − √
t)α−1],

g′′
α(t) = α(α − 1)

4t
gα−2(t) − g′

α(t)

2t
.

Expanding the terms gives

1 − α

α2
[g′

α(t)]2 = 1 − α

4t
[(1 + √

t)2(α−1) + (1 − √
t)2(α−1) − 2(1 − t)α−1],

1

α
gα(t)g′′

α(t) = α − 1

4t
gα(t)gα−2(t) − 1

2αt
gα(t)g′

α(t)

= α − 1

4t
[(1 + √

t)2(α − 1) + (1 − √
t)2(α−1) + 2(1 + t)(1 − t)α−2]

− 1

4t
√

t
[(1 + √

t)2α−1 − (1 − √
t)2α−1 − 2

√
t(1 − t)α−1].

Therefore,

hα(t) = 1

t

(
(1 − t)α−2

[
α − 1 + t

2

]
− 1

4
√

t
[(1 + √

t)2α−1 − (1 − √
t)2α−1]

)
.
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Since we are only interested in the sign of Eq. (D1), we
consider

2α − 1 − t − (1 − t)3/2

2
√

t

[(
1 + √

t

1 − √
t

)α−1/2

−
(

1 − √
t

1 + √
t

)α−1/2]
.

(D2)

Here, it is convenient to introduce hyperbolic functions.
Let e2x = (1 + √

t)/(1 − √
t), which means that t ∈ [0,1] is

mapped onto x ∈ [0,∞). Then, we have

x = arctanh
√

t, t = tanh2 x, and 1 − t = 1

cosh2 x

and expression (D2) becomes

2α − 1 − tanh2 x − sinh[x(2α − 1)]

sinh x cosh2 x

= 2(α − 1) + sinh x − sinh[x(2α − 1)]

sinh x cosh2 x
.

Note that 2 sinh x cosh2 x = sinh 2x cosh x = (sinh 3x +
sinh x)/2. The sign is the same as the sign of

α − 1

2
sinh 3x + 1 + α

2
sinh x − sinh[x(2α − 1)],

which we can Taylor expand. Note that this is an odd function
and the coefficients are

ck(α) = 1

2k!
[(α − 1)3k + 1 + α − 2(2α − 1)k].

To show convexity (concavity) it suffices to show that all the
coefficients are positive (negative). Since ck(α) is a polynomial
and it vanishes at α = 1 it must be divisible by (α − 1).

(2α − 1)k =
k∑

j=0

(
k

j

)
(α − 1)jαk−j

= αk + (α − 1)
k−1∑
j=0

(
k

j + 1

)
(α − 1)jαk−j−1,

1 + α − 2αk = (1 − α) + 2α(1 − αk−1)

= (1 − α)

⎛
⎝1 + 2

k−1∑
j=1

αj

⎞
⎠ .

Putting everything together gives

ck(α) = α − 1

2k!
pk(α),

where pk(α) = 3k − 1 − 2
k−1∑
j=1

αj

− 2
k−1∑
j=0

(
k

j + 1

)
(α − 1)jαk−j−1.

Note that for α � 1, pk(α) is monotonically decreas-
ing in α, so it has at most one zero. Therefore,
ck(α) has at most two zeros (the first one at α = 1).

By checking

ck

(
3

2

)
= 1

2k!

(
3k + 5

2
− 2k+1

)
� 0,

ck(2) = 1

2k!
(3 − 3k) � 0,

we conclude that the other zero is always there and is
contained within α ∈ ( 3

2 ,2). Hence for α ∈ (1, 3
2 ] ∪ [2,∞) all

the coefficients have the same sign, which proves convexity or
concavity of the original function. �

APPENDIX E: THE CERTIFICATION PROCEDURE

This certification procedure assumes that both devices are
memoryless, i.e., every round is identical and independent of
each other.

Suppose we are given a measurement device (Alice) with
M different settings, which correspond to different binary
observables, {Aj }j∈[M]. The goal of the certification procedure
is to characterize the anticommutation matrix T , or more
specifically the effective pairwise commutators

εjk = 1
2 〈{Aj ,Ak}〉 = 1

2 tr({Aj,Ak}ρ).

Ideally, since we are interested in large uncertainty, we would
like our measurements to exactly anticommute, i.e., εjk = 0
for j �= k.

To perform device-independent certification we need an
auxiliary device (Bob), which in our case is a measurement
device with 2(M2 ) settings denoted by Bjk,t , where j,k ∈
[M],j �= k and t ∈ {0,1} that shares entanglement with the
first device. Following the procedure proposed by Slofstra [35]
we estimate the following quantity for all pairs (j,k), j �= k:

βjk := 〈Aj ⊗ (Bjk,0 + Bjk,1) + Ak ⊗ (Bjk,0 − Bjk,1)〉.
Since this is clearly equivalent to the CHSH game, we can
see the entire procedure as a combination of multiple CHSH
subgames in which Alice is not told which subgame she
is playing. Therefore, we can apply a standard result from
Ref. [34], which establishes a trade-off between the observed
violation and the effective anticommutator of the observables
used by Alice (in fact, the same trade-off applies on Bob’s side
but since we do not want to certify the auxiliary device we do
not need it). More specifically, we have

|εjk| � βjk

4

√
8 − β2

jk := cjk.

While this does not allow us to find the anticommutation matrix
explicitly, we can place an upper bound on its norm. It is easy
to see that ||T || � ||T ′||, where

T ′
jk =

{
1 if j = k,

cjk otherwise.

Therefore, the observed statistics allows us to bound ||T ||,
which turns out to be sufficient for our applications.

For completeness, we also provide an explicit description of
devices that achieve the maximum violation for all subgames.
Suppose Alice and Bob share a maximally entangled state of
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dimension d = 2� M−1
2 �

|	〉AB = 1√
d

d∑
k=1

|k〉A|k〉B

and that their measurements are

Aj = �j and Bjk,t = �
T

j + (−1)t�
T

k√
2

,

where {�j } is a set of anticommuting observables acting on
d-dimensional Hilbert space as defined in Appendix A. It is
easy to check that for every pair (j,k),j �= k, we obtain

〈	 |Aj ⊗ (Bjk,0 + Bjk,1) + Ak ⊗ (Bjk,0 − Bjk,1)|	〉 = 2
√

2,

which implies εjk = 0. Hence, we have certified a device that
performs M exactly anticommuting measurements.
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