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Heisenberg’s uncertainty principle implies that if one party (Alice) prepares a system and randomly measures
one of two incompatible observables, then another party (Bob) cannot perfectly predict the measurement
outcomes. This implication assumes that Bob does not possess an additional system that is entangled to
the measured one; indeed, the seminal paper of Einstein, Podolsky, and Rosen (EPR) showed that maximal
entanglement allows Bob to perfectly win this guessing game. Although not in contradiction, the observations
made by EPR and Heisenberg illustrate two extreme cases of the interplay between entanglement and uncertainty.
On the one hand, no entanglement means that Bob’s predictions must display some uncertainty. Yet on the other
hand, maximal entanglement means that there is no more uncertainty at all. Here we follow an operational
approach and give an exact relation—an equality—between the amount of uncertainty as measured by the
guessing probability and the amount of entanglement as measured by the recoverable entanglement fidelity.
From this equality, we deduce a simple criterion for witnessing bipartite entanglement and an entanglement
monogamy equality.
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I. UNCERTAINTY RELATIONS

Heisenberg’s uncertainty principle forms one of the funda-
mental elements of quantum mechanics. Originally proven for
measurements of position and momentum, it is one of the most
striking examples of the difference between a quantum and a
classical world [1]. Uncertainty relations today are probably
best known in the form given by Robertson [2], who extended
Heisenberg’s result to two arbitrary observables X and Z. More
precisely, Robertson’s relation states that when measuring the
state |ψ〉 using either X or Z, one finds

�X�Z � 1
2 |〈ψ |[X,Z]|ψ〉|, (1)

where �Y =
√

〈ψ |Y 2|ψ〉 − 〈ψ |Y |ψ〉2 for Y ∈ {X,Z} is the
standard deviation resulting from measuring |ψ〉 with observ-
able Y .

In the modern-day literature, uncertainty is usually mea-
sured in terms of entropies (starting with [3–5]; see [6] for
a survey). One of the reasons this is desirable is that Eq. (1)
makes no statement if |ψ〉 happens to give zero expectation on
[X,Z] [7]. To see how uncertainty can be quantified in terms
of entropies, let us start with a simple example. Throughout,
we let Alice (A) denote the system to be measured. For now,
let us consider measuring a single qubit in the state ρA using
two incompatible measurements given by the Pauli σx or σz

eigenbases, and let K be the random variable associated with
the measurement outcome. We have from [8] that for any
state ρA,

H (K|�) = 1
2 [H (K|� = σx) + H (K|� = σz)] � 1

2 , (2)

where H (K|� = θ ) = −∑
k pk|�=θ log pk|�=θ is the

Shannon entropy (all logarithms are base 2 in this article)
of the probability distribution over measurement outcomes
k ∈ {0,1} when we perform the measurement labeled θ on the
state ρA, and each measurement is chosen with probability
pθ = 1/2. To see that this is an uncertainty relation, note

that if one of the two entropies is zero, then (2) tells us
that the other is necessarily nonzero, i.e., there is at least
some amount of uncertainty. If we measure a dA-dimensional
system A in two orthonormal bases θ0 = {|x0〉}dA

x=1 and
θ1 = {|x1〉}dA

x=1, then the right-hand side (r.h.s.) of (2) becomes
log(1/c), where c = maxx0,x1 |〈x0|x1〉|2. The largest amount
of uncertainty, i.e., the largest log(1/c), is thereby obtained
when |〈x0|x1〉| = 1/

√
dA, that is, the two bases are mutually

unbiased (MUB) [9].
When thinking about uncertainty, it is often illustrative to

adopt an adversarial perspective and consider an “uncertainty
game” [10], commonly used in quantum cryptography [11]. In
particular, we will think about uncertainty from the perspective
of an observer called Bob holding a second system (B)
whose task is to guess the outcome of the measurement on
Alice’s system successfully. Bob thereby knows ahead of
time what measurements could be made and the probability
that a particular measurement setting is chosen. To help him
win the game, Bob may even prepare ρA himself, and Alice
tells him which measurement she performed before he has to
make his guess. The amount of uncertainty as measured by
entropies can be understood as a limit on how well Bob can
guess Alice’s measurement outcome—the more difficult it is
for Bob to guess, the more uncertain Alice’s measurement
outcomes are. If Bob is not entangled with A but only keeps
classical information about the state, such as for example a
description of the density operator ρA, then (2) still holds even
if we condition on Bob’s classical information B [12]. More
precisely, we have H (K|�Bclassical) � 1/2 for any states or
distribution of states that Bob may prepare.

II. UNCERTAINTY AND ENTANGLEMENT

Another central element of quantum mechanics is the
possibility of entanglement, and examples suggest that there
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is a strong interplay between entanglement and uncertainty.
In particular, Einstein, Poldolsky, and Rosen (EPR) [13]
observed that if Bob is maximally entangled with A, then
his uncertainty can be reduced dramatically. To see this,
imagine that ρAB = |�〉〈�| where |�〉 = (|00〉 + |11〉)/√2
is the maximally entangled state between A and B. Since |�〉
is maximally correlated in both the σx and σz eigenbases,
Bob can simply measure his half of the EPR pair in the
same basis as Alice to predict her measurement outcome
perfectly, winning the guessing game described above. This
is precisely the effect observed in [13] and highlights that
the uncertainty relations of (1) and (2) do not capture the
interplay between entanglement and uncertainty in the general
two-party guessing game. Fortunately, it is possible to extend
the notion of uncertainty relations to take the possibility of
entanglement into account [14]. Such relations are known as
uncertainty relations with quantum side information (here B).
More precisely, it was shown [10] that if we measure A in two
bases labeled θ0,θ1, then

H (K|B�) = 1
2 [H (K|B� = θ0) + H (K|B� = θ1)]

� log(1/c) + H (A|B), (3)

where H (A|B) is the conditional von Neumann entropy of
A given B. If A and B are entangled, then H (A|B) can
be negative. Indeed, H (A|B) = − log dA when ρAB is the
maximally entangled state, in which case the lower bound
in (3) becomes trivial. The uncertainty relation of (3) thus
allows for the possibility that Bob’s uncertainty could be
reduced in the presence of entanglement. It also provides us
with a first clue to the relation between entanglement and
uncertainty in one direction, namely, that little uncertainty [i.e.,
H (K|B�) is small] implies that H (A|B) must be negative and
hence ρAB is entangled [15]. As such, (3) is useful for the task
of witnessing entanglement [16,17].

Many more similar relations have since been proven for
more than two measurements on Alice’s system, and in
terms of other forms of entropies. One entropy measure that
is of central importance in cryptography is the conditional
min-entropy Hmin, and it yields a more immediate link between
uncertainty relations with quantum side information and
the uncertainty game mentioned above. Specifically, it was
shown [18] that if we measure A in one of dA + 1 possible
mutually unbiased bases chosen uniformly at random, then

Hmin(K|B�) � log dA + min{0,Hmin(A|B)}. (4)

[More precisely, smoothing of the entropies is required for (4)
to hold, and hence the symbol � refers to an additional term
that depends on the smoothing.] With K being a classical
random variable, the conditional min-entropy Hmin(K|B�) =
− log Pguess(K|B�) is simply derived from the maximum
probability that Bob can guess K , averaged over the choice
of basis θ [19]. That is, it captures exactly how well Bob
can guess Alice’s measurement outcome K by perform-
ing a measurement on B. The fully quantum conditional
min-entropy Hmin(A|B) has the operational interpretation
Hmin(A|B) = − log[dAF (A|B)], with

F (A|B) = max
	B→A′

F (�AA′,IA ⊗ 	B→A′(ρAB)), (5)

where F (ρ,σ ) = (Tr
√√

ρσ
√

ρ)2 is Uhlmann’s fidelity [20],

�AA′ = |�AA′ 〉〈�AA′ |, and |�AA′ 〉 = (1/
√

dA)
∑dA

j=1 |j 〉A|j 〉A′

is the maximally entangled state between A and A′ [19]. In
other words, the conditional min-entropy Hmin(A|B) measures
how close one can bring a bipartite quantum state ρAB to
the maximally entangled state by performing an arbitrary
operation 	 on the B system. Recall from the example
above that Bob can win the uncertainty game perfectly if
ρAB really is maximally entangled. Intuitively, the conditional
min-entropy thus measures how far away Bob is from this
scenario. Needless to say, one could write similar statements
for Rényi entropies other than the min-entropy, but these are,
in fact, equivalent up to small error terms.

Do these relations resolve the question of how uncertainty
relates to entanglement? Note that the uncertainty relation (4)
again provides us with a relation between entanglement and
uncertainty in one direction. In particular, it tells us that if
it is easy for Bob to guess Alice’s measurement outcome
[Hmin(K|B�) is small], then there really exists some map
	B→A′ that Bob can use to bring ρAB at least somewhat close
to being maximally entangled with A. That is, it tells us that a
reduction in uncertainty implies the presence of entanglement.
However, it does not tell us that the presence of entanglement
really does lead to a significant reduction in uncertainty. Of
course, if ρAB is close to the maximally entangled state, then
uncertainty is reduced by at least some amount because two
states which are close yield similar statistics when measured.
Yet we will see below that this alone is insufficient for our
purpose.

III. MAIN RESULT

Here, we prove the following finite-dimensional equality if
we measure A in one of dA + 1 possible mutually unbiased
bases with uniformly random probability

H2(K|B�) = log(dA + 1) − log
(
2−H2(A|B) + 1

)
, (6)

where

H2(A|B) = − log Tr[ρAB(1A ⊗ ρB)−1/2ρAB(1A ⊗ ρB)−1/2]

(7)

is the conditional Rényi 2-entropy used in quantum cryptog-
raphy (see, e.g., [21,22]), and K is the classical measurement
outcome obtained by measuring A in the basis labeled � = θ .
Since K is a classical random variable, the Rényi 2-entropy
H2(K|B�) has an operational interpretation as given by the
probability that Bob manages to guess Alice’s measurement
outcome K using the pretty good measurement [23,24] after
he learns which measurement � was made: H2(K|B�) =
− log P

pg
guess(K|B�). For the fully quantum Rényi 2-entropy

H2(A|B), we prove (see Appendix A) that

H2(A|B) = − log[dAF pg(A|B)], (8)

with

F pg(A|B) = F
(
�AA′,IA ⊗ 	

pg
B→A′(ρAB)

)
, (9)

where 	pg is the pretty good recovery map [25]. [We denote
by �AA′ the normalized maximally entangled state, and
hence a factor dA appears in (8).] Both the pretty good
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measurement and the pretty good recovery map get very
close to the performance of the optimal processes [24,25].
For the special case ρAB = ρA ⊗ ρB , (6) becomes an equation
relating unconditional entropies that was discussed in [26,27]
and used to derive uncertainty relations for Shannon entropies
(see [6] for an overview). Furthermore, the conditional Rényi
2-entropy also appears in the study of randomness extractors
against quantum side information (see, e.g., [22,28]), and in
its quantum counterpart decoupling (see, e.g., [29,30]).

We mention that the existence of a full set of MUBs
is only known in prime power dimension [31,32], but we
show in Appendix D 1 that our main result (6) also holds for
informationally complete positive operator valued measures
(SIC-POVMs) and unitary 2-designs. For the latter, efficient
constructions are known in any dimension [33,34], and in
particular the set of all bases defines a unitary 2-design.

Our relation (6) establishes an equivalence between uncer-
tainty as measured by H2(K|B�) and our ability to recover
entanglement as given by H2(A|B). It is an operational way to
merge the observations of EPR and Heisenberg into a single
equation, demonstrating that both effects can be seen as flip
sides of the same coin.

IV. DISCUSSION

A. Operational examples

To gain further intuition about (6), let us first return to the
uncertainty game discussed earlier. Note that in terms of the
operational interpretations of the conditional Rényi 2-entropy,
we can rewrite (6) as

P pg
guess(K|B�) = 1

dA + 1

∑
θ

P pg
guess(K|B� = θ )

= dAF pg(A|B) + 1

dA + 1
. (10)

In the game, Bob prepares a state ρAB and sends the A system
to Alice. She measures A in one basis chosen uniformly
at random from the complete set of dA + 1 MUBs, and
announces the basis (the index θ ) to Bob. Bob’s task is to
guess Alice’s outcome using the pretty good measurement on
B. Equation (10) says that Bob’s ability to win or lose this game
is quantitatively connected to the recoverable entanglement
fidelity of ρAB , as measured by F pg(A|B).

Let us consider a number of special cases that illustrate
this concept. In what follows, we refer to H2(A|B) � 0 as the
Heisenberg-limited regime and H2(A|B) < 0 as the enhanced
regime. As we will see below, this terminology refers to
two distinct regimes, one in which Bob’s guessing proba-
bility is restricted by a Heisenberg-like uncertainty relation
[see Eq. (11)], and the other in which his guessing prob-
ability can be enhanced beyond this restriction (although,
of course, not in violation of the uncertainty principle).
For example, if ρAB is the maximally entangled state, we
have F pg(A|B) = 1 and Bob can guess Alice’s measurement
outcome perfectly regardless of which measurement she
performs, i.e., P

pg
guess(K|B� = θ ) = 1 for all θ . That is, there

is no uncertainty, as expected. If Bob prepares ρAB with less
than maximal entanglement, then F pg(A|B) < 1 and there
will be at least one basis for which Bob cannot perfectly

guess the outcome. Thus, there is at least some amount of
uncertainty expressed quantitatively as H2(K|B�). If ρAB is
separable, then Bob is stuck in the Heisenberg-limited regime
(F pg � 1/dA) and his ability to guess is very poor, constrained
by the uncertainty relation

P pg
guess(K|B�) � 2/(dA + 1). (11)

This illustrates that entanglement is necessary for Bob to gain
an advantage in the guessing game.

B. Uncertainty and certainty relations

One might ask why we formulate our uncertainty equality
(6) using a full set of dA + 1 MUBs and not fewer measure-
ments. To answer this, it is instructive to study what kind of
relations our main result (6) implies. On the one hand, we can
deduce regular uncertainty relations and, e.g., we get a relation
in terms of the smooth conditional min-entropy similar to [18],

Hε
min(K|�B) � log(dA + 1) − log(2−Hmin(A|B) + 1)

− 1 − 2 log
1

ε
, (12)

where ε > 0 denotes a small error term (see Appendix C 2 for
details). Here, the left-hand side has the operation meaning
of minus the logarithm of Bob’s guessing probability (up
to error ε) when Alice measures in one of dA + 1 possible
MUBs chosen uniformly at random. But, on the other hand,
we also get relations that upper bound the uncertainties of
incompatible observables. In the literature, these are known as
certainty relations [35,36], and here we give such relations that
allow for quantum side information. For example, we get, in
terms of the conditional min-entropy (again up to a small error
term ε > 0),

Hmin(K|�B) � log(dA + 1) − log

(
2−Hε

min(A|B) + 2

ε2

)

+ 1 + 2 log
1

ε
. (13)

This says that Bob’s certainty, i.e., his ability to guess Alice’s
measurement outcome, must be high if he is highly entangled
to Alice as measured by the smooth conditional min-entropy.
Like our main result, (13) implies that if Alice and Bob are
maximally entangled, Bob has perfect certainty about Alice’s
outcomes regardless of which measurement she performs.

Now there is a simple argument that considering less than
a complete set of MUBs, a so-called extendable set (where
there exists an MUB that could be added to the set), implies
that only trivial certainty relations can hold. As uncertainty
equalities as in (6) imply nontrivial certainty relations, such
equalities cannot hold for extendable sets. This is in sharp
contrast to uncertainty relations, where nontrivial relations can
be obtained for just two measurements. To see this, consider the
case where ρA is just one qubit and we perform measurements
in the σX and σZ eigenbases, respectively. Hence, B is trivial,
Hmin(K|�B) = Hmin(K|�), and we just consider the entropy
of the outcome distribution of measuring ρA in one of the two
bases. In terms of the uncertainty game discussed before, this
means that Bob can only choose the state ρA in order to guess
the outcome of the measurement on Alice’s system (but is not
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allowed to keep any quantum information B about A). Clearly,
when ρA is an eigenstate of σY , the outcome distribution
for both σX and σZ is uniform and hence Hmin(K|�) = 1,
which is the maximum value. This argument generalizes to
any extendable set of MUBs, since there exists a state (from
another MUB) that has Hmin(K|�) = log dA which is the
maximum value that it can take and hence only the trivial
upper bound or certainty relation holds. It is thus clear that
equalities such as (6) can only hold for sets of measurements
that are sufficiently rich.

C. Bounds for fewer bases

Even though there does not exist an uncertainty equality
for measuring in less than dA + 1 MUBs, we can still give
lower (and trivial upper) bounds for Bob’s uncertainty about
1 � n � dA MUBs on A in terms of the recoverable entangle-
ment fidelity between A and B. Moreover, these inequalities
are tight for all n; that is, fixing the set of measurements,
there exist states that achieve the upper and lower bounds. Our
relations are again in terms of the conditional Rényi 2-entropy.
Using P

pg
guess(n) as a shorthand to denote Bob’s guessing

probability P
pg
guess(K|B�) when Alice does measurements in

a subset of size n of a complete set of MUBs, we find that the
following bounds are tight in the Heisenberg-limited regime
[F pg(A|B) � 1/dA]:

1

dA

� P pg
guess(n) � dA

n
F pg(A|B) + n − 1

ndA

. (14)

Moreover, the following bounds are tight in the enhanced
regime [F pg(A|B) > 1/dA]:

F pg(A|B) � P pg
guess(n) � n − 1

n
F pg(A|B) + 1

n
. (15)

Here, the upper bounds (lower bounds) can be thought of as
uncertainty relations (certainty relations). Note that we can
derive these tight relations for all n directly from our main
result. Taken together, (14) and (15) completely characterize
the allowable range of values that P

pg
guess(n) can attain. As

an example, consider dA = 5. Figure 1 plots the tight upper
and lower bounds as a function of F pg(A|B). Notice that
the (trivial) lower bound does not change as n varies from
1 to 5; it only increases when we include the sixth basis.
This is consistent with our discussion in the previous section,
where we noted that a nontrivial certainty relation, i.e., a
relation stronger than the certainty relation one obtains for
a single basis, requires sufficiently rich sets of measurements.
In contrast, the tight upper bound steadily decreases with n,
reflecting the complementarity between the different bases.
Overall, as n increases from 1 to 6, the area of the allowed
range monotonically shrinks towards zero, and the allowed
area becomes zero for n = 6 since the two quantities P

pg
guess(n)

and F pg(A|B) are deterministically related by our main result.
From Fig. 1, one can also see that if Bob can guess two

MUBs on A well, then he can also guess dA + 1 MUBs on A

fairly well. Conceptually, this follows from a two-step chain
of reasoning: if Bob’s uncertainty is low for two MUBs, then
he must be entangled to Alice, which in turn implies that he
must have a low uncertainty for all bases. So entanglement
provides the key link, from two MUBs to all bases. From
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FIG. 1. (Color online) Upper bounds (UB) and lower bounds
(LB) on P

pg
guess(n) as a function of F pg(A|B) for dA = 5, for various

values of n. For n = 1,2,3,4,5, the (trivial) lower bound is given
by the solid black line. The upper bounds for these values of n are,
respectively, the black, purple, blue, green, and orange dashed lines.
For n = 6, the upper and lower bounds coincide, i.e., the allowed
values are confined to live on the red dashed line. The regions where
H2(A|B) � 0 and H2(A|B) < 0 are labeled “Heisenberg-limited”
and “enhanced,” respectively.

the above results, it is straightforward to derive the following
quantitative statement of this idea:

P pg
guess(dA + 1) �

dA

[
2P

pg
guess(2) − 1

] + 1

dA + 1
, (16)

which says that as P
pg
guess(2) → 1, then P

pg
guess(dA + 1) → 1.

D. Applications in quantum information theory

We briefly discuss some applications of our main result to
quantum information processing tasks. Because entanglement
is crucial for several quantum information technologies, the
experimenter often needs a method to verify that their source
is indeed producing entangled pairs, i.e., an “entanglement
witness.” Following [10,37–39], our main result offers a
simple strategy for witnessing entanglement since it con-
nects entanglement to uncertainty, which is experimentally
measurable. In particular, Alice and Bob (in their distant
laboratories, receiving A and B, respectively) can sample from
the source multiple times and communicate their results to
gather statistics, say, regarding the Kθ observable on A and
the Lθ observable on B. Suppose they do this for a set of n

MUBs {Kθ }nθ=1 on A, with Bob measuring in some arbitrary
set of n bases {Lθ }nθ=1 on B. They then estimate the joint
probability distribution for each pair {Kθ,Lθ }, and hence they
can evaluate the classical entropies H2(Kθ |Lθ ). According to
our main result, their source is necessarily entangled if

n∑
θ=1

2−H2(Kθ |Lθ ) > 1 + n − 1

dA

. (17)

Note that this method offers the flexibility of witnessing
entanglement with 2 � n � dA + 1 observables (see also [40]
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for a different approach). For n = 2, the same strategy based
on the uncertainty relation (3) was implemented in [16,17].

Another application of our main result is to quantum error
correction of noisy quantum channels. By viewing (6) from
the dynamic perspective of Alice sending states through a
quantum channel to Bob, and noting that the entanglement
fidelity such as that appearing in (8) is a standard figure of
merit for quantum error correction, we see from (6) that Bob’s
ability to error correct is quantitatively linked to his ability
to guess which states Alice sends, when she is sending basis
elements from a complete set of MUBs.

Our uncertainty equality (6) also gives insight for studying
the monogamy of correlations. The basic idea of monogamy
is that A’s entanglement with B limits the degree to which
A can be entangled with a third system, E. There have been
several statements of monogamy in the literature; however, a
nice aspect of our results is the potential to state monogamy
as an equation rather than an inequality. We show that for any
tripartite pure state ρABE ,

inf
σ

D 1
2

(
ρAE‖1A

dA

⊗ σE

)

= log dA − log
[
(dA + 1)P pg

guess(K|B�) − 1
]
, (18)

where the infimum is over all quantum states σE , and D 1
2

denotes the relative Rényi 1/2-entropy (see Appendix B 3 for
details). This relation states that Bob’s guessing probability for
a complete set of Alice’s MUBs is a quantitative measure of
the distance of ρAE (Alice’s and Eve’s state) to a completely
uncorrelated state. According to (18), Bob and Eve fight in a
“zero-sum game” to be correlated to Alice, i.e., any gain of
knowledge about Alice’s system by Bob forces Eve’s state to
get closer to being uncorrelated with Alice, and conversely
any gain of distance from the uncorrelated state by Eve forces
Bob to lose knowledge.

Finally, we remark that the conditional Rényi 2-entropy is
an important quantity in the study of classical and quantum
randomness extractors against quantum side information
(see, e.g., [28,29]). Since our uncertainty equality (6) connects
the conditional Rényi 2-entropy of the premeasurement state to
the conditional Rényi 2-entropy of the postmeasurement state,
our main result (6) shines some light on the relation between
classical and quantum extractors. It can be used to get a new
perspective on the results in [18], where security of the noisy
storage model [41] was first linked to the quantum capacity.

E. Conclusions

In summary, we considered a two-party guessing game,
where Alice measures her system A in one of n possible
complementary observables and Bob uses his system B to help
him guess Alice’s outcome. We showed that Bob’s probability
for winning this game, assuming he does the “pretty good
measurement” on B, is connected through an equality for
n = dA + 1 (inequality for n < dA + 1) to the prior entan-
glement between B and A. The latter is measured by the en-
tanglement fidelity that can be recovered with the “pretty good
recovery map,” which we proved is given by the conditional
Rényi 2-entropy. We therefore showed that our operationally
motivated equality can be thought of as an entropic uncertainty

relation and, as such, connects Heisenberg’s uncertainty prin-
ciple to EPR’s guessing game via an equation. We expect our
approach to inspire further quantitative relations capturing the
connection between uncertainty and entanglement. In addition,
it would be interesting to explore the connection between the
guessing game considered here and other nonlocal uncertainty
games that have been considered in the literature, e.g., in the
context of Bell inequalities [42] and steering [43,44].
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APPENDIX A: QUANTITATIVE MEASURES

1. Entanglement

Despite not being monotonic under local operations and
classical communication, conditional entropies play an im-
portant role in entanglement theory [45]. For example, the
conditional von Neumann entropy H (A|B) quantifies the
asymptotic rate for distilling EPR pairs via a one-way hashing
protocol [15]. Another important conditional entropy studied
in cryptography is the min-entropy. It was originally defined
in an abstract form [22], but was later given an intuitive opera-
tional meaning [19] in terms of the recoverable entanglement
fidelity, i.e., Hmin(A|B) = − log[dAF (A|B)] with

F (A|B) = max
	B→A′

F (�AA′ ,(IA ⊗ 	B→A′)(ρAB)), (A1)

where the maximum is over all quantum operations 	B→A′

with A′ a copy of A. (See, e.g., [46] for discussion of
the importance of the entanglement fidelity in quantum
information theory.)

A related entropy measure is the conditional Rényi 2-
entropy, which is defined as

H2(A|B) = − log Tr[ρAB(1A ⊗ ρB)−1/2ρAB(1A ⊗ ρB)−1/2].

(A2)

Here we give an operational meaning for the conditional Rényi
2-entropy by showing that like the conditional min-entropy,
it is linked to the recoverable entanglement fidelity in that
H2(A|B) = − log[dAF pg(A|B)], with

F pg(A|B) = F
(
�AA′,IA ⊗ 	

pg
B→A′(ρAB)

)
, (A3)

and 	
pg
B→A′ is the pretty good recovery map. To see this, we

note that the pretty good recovery map can be written as

	
pg
B→A′(·) = 1

dA

E†
B→A′

(
ρ

−1/2
B (·)ρ−1/2

B

)
, (A4)

where E†
B→A′ denotes the adjoint of the Choi-Jamilkowski map

of ρAB ,

EA→B(·) = dATrA{[(·)T ⊗ 1B]ρAB}. (A5)

Putting this in (A2), we arrive at (A3). The map 	
pg
B→A′ is pretty

good in the sense that it is close to optimal for recovering the
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maximally entangled state, i.e., we have [25]

F 2(A|B) � F pg(A|B) � F (A|B). (A6)

We also remark that both F (A|B) and F pg(A|B) are nonin-
creasing under the action of local quantum channels acting
on system B and local unital (identity-preserving) quantum
channels acting on system A (see, e.g., [21]).

2. Uncertainty

When measuring a bipartite quantum state ρAB on A in
some basis K = {|k〉}, we arrive at a classical-quantum state,

ρKB =
∑

k

(|k〉〈k| ⊗ 1B)ρAB(|k〉〈k| ⊗ 1B) (A7)

=
∑

k

|k〉〈k| ⊗ ρk
B. (A8)

The conditional min-entropy of ρKB , using the formula for
F (K|B) from (A1), translates to Hmin(K|B) = − log Pguess

(K|B), with

Pguess(K|B) = max
{Ek

B }

∑
k

Tr
[
Ek

Bρk
B

]
(A9)

the probability for guessing K correctly by performing the
optimal measurement {Ek

B} on the quantum side information
B. The conditional min-entropy quantifies the uncertainty
of K in the exact sense of the uncertainty game, namely, it
quantifies the probability that Bob wins the uncertainty game.

The conditional Rényi 2-entropy of a classical-quantum
state is again defined as in (A2). Furthermore, it was shown
in [23] that its operational form (A3) is given by

H2(K|B) = − log P pg
guess(K|B), (A10)

where P
pg
guess(K|B) denotes the probability of guessing K

by performing the pretty good measurement [24]. For the
classical-quantum state (A7), the pretty good measurement
operators are defined as

�k
B = ρ

−1/2
B ρk

Bρ
−1/2
B . (A11)

By calculating P
pg
guess(K|B) = ∑

k Tr[�k
Bρk

B], the equivalence
of (A10) to the definition of the conditional Rényi 2-entropy
in (A2) can be seen. Hence, the conditional Rényi 2-entropy
corresponds to the probability that Bob wins the uncertainty
game by using the pretty good measurement. It is known that
the pretty good measurement performs close to optimal, i.e.,
analogous to (A6), we have [24]

P 2
guess(K|B) � P pg

guess(K|B) � Pguess(K|B). (A12)

In the following, we will not only measure in one fixed
basis, but with equal probability in one of dA + 1 MUBs. For
that reason, we will work with the state

ρKB� = 1

dA + 1

dA+1∑
θ=1

dA∑
k=1

(|θk〉〈θk| ⊗ 1B)

× ρAB(|θk〉〈θk| ⊗ 1B) ⊗ |θ〉〈θ |�, (A13)

where the elements of the dA + 1 MUBs θ are denoted by
{|θk〉}. It is straightforward to see that

P pg
guess(K|B�) = 1

dA + 1

∑
θ

P pg
guess(K|B� = θ ). (A14)

APPENDIX B: PROOF OF MAIN RESULTS

1. Full set of mutually unbiased bases

Here we prove our main result, the uncertainty equality (6).
For this, we define ρ̃AB = (1A ⊗ ρ

−1/4
B )ρAB(1A ⊗ ρ

−1/4
B ) and

rewrite the fully quantum conditional Rényi 2-entropy as
H2(A|B) = − log Tr[ρ̃2

AB]. Similarly, we rewrite the classical-
quantum conditional Rényi 2-entropy as

H2(K|B�)

= − log

(
1

dA + 1

∑
θ,k

TrB{TrA[ρ̃AB(|θk〉〈θk| ⊗ 1B)]2}
)

.

(B1)

Now we introduce the space HA′B ′ ∼= HAB as well as the state
ρ̃A′B ′ ∼= ρ̃AB . We have

(dA + 1)×2−H2(K|B�) =
∑
θ,k

TrB{TrA[(|θk〉〈θk| ⊗ 1B)ρ̃AB]TrA[(|θk〉〈θk| ⊗ 1B)ρ̃AB]} (B2)

=
∑
θ,k

TrBB ′TrAA′[(|θk〉〈θk| ⊗ |θk〉〈θk|)(ρ̃AB ⊗ ρ̃A′B ′)FBB ′] (B3)

= TrBB ′TrAA′[(IAA′ + FAA′)(ρ̃AB ⊗ ρ̃A′B ′)FBB ′] (B4)

= TrBB ′TrAA′[(ρ̃AB ⊗ ρ̃A′B ′)FBB ′] + TrBB ′TrAA′[FAA′(ρ̃AB ⊗ ρ̃A′B ′)FBB ′] (B5)

= TrB[TrA(ρ̃AB)TrA(ρ̃AB)] +
∑
t,s

TrBB ′TrAA′[(|t〉〈s| ⊗ |s〉〈t | ⊗ 1BB ′)(ρ̃AB ⊗ ρ̃A′B ′)FBB ′] (B6)

= 1 +
∑
t,s

TrB{TrA[(|t〉〈s| ⊗ 1)ρ̃AB]TrA[(|s〉〈t | ⊗ 1)ρ̃AB]} (B7)

= 1 + Tr
[
ρ̃2

AB

]
, (B8)

where FAA′ = ∑
t,s |t〉〈s| ⊗ |s〉〈t | is the operator that swaps A and A′ (similarly for FBB ′). The second line uses the “swap trick,”

for operators M and N , and swap operator F : Tr(MN ) = Tr[(M ⊗ N )F ]. The third line invokes that a full set of MUBs generates
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a complex projective 2-design [47], that is,

∑
θ,k

|θk〉〈θk| ⊗ |θk〉〈θk| = IAA′ + FAA′ . (B9)

In Appendix D 1, we show that our result also holds for
other measurements as long as they form a complex projective
2-design.

2. Fewer bases

Here, we derive the upper and lower bounds (14) and (15)
on the uncertainty when Alice measures in 1 � n < dA + 1
MUBs. It is helpful to first analyze the case for one basis K .

Lemma 1. Let K = {|k〉} be an orthonormal basis on some
Hilbert space HA. Then, we have for any bipartite quantum
state ρAB that

P pg
guess(K|B) � F pg(A|B), (B10)

where ρKB = ∑
k(|k〉〈k| ⊗ 1B)ρAB(|k〉〈k| ⊗ 1B).

Proof. We calculate

P pg
guess(K|B) = Tr

[
ρKBρ

−1/2
B ρKBρ

−1/2
B

]
(B11)

= Tr
[
ρABρ

−1/2
B ρKBρ

−1/2
B

]
(B12)

= dATr
[
�AA′(IA ⊗ 	

pg
B→A′)(ρKB)

]
(B13)

= F
[
�AA′ ,dA(IA ⊗ 	

pg
B→A′)(ρKB)

]
(B14)

� F
[
�AA′ ,(IA ⊗ 	

pg
B→A′)(ρAB)

]
(B15)

= F pg(A|B). (B16)

The inequality step in this proof invoked the property that the
fidelity decreases upon decreasing one of its arguments, and

hence it remains to show

dA

(
IA ⊗ 	

pg
B→A′

)
(ρKB) �

(
IA ⊗ 	

pg
B→A′

)
(ρAB). (B17)

We denote the non-negative operator σAA′ = (IA ⊗ 	
pg
B→A′)

(ρAB), and note that the measurement in K on the A system
commutes with IA ⊗ 	

pg
B→A′ . We get

dA

(
IA ⊗ 	

pg
B→A′

)
(ρKB) − (

IA ⊗ 	
pg
B→A′

)
(ρAB)

= dA

∑
k

(|k〉〈k| ⊗ 1A′)σAA′(|k〉〈k| ⊗ 1A′)

−
∑
k,k′

(|k〉〈k| ⊗ 1A′)σAA′(|k′〉〈k′| ⊗ 1A′) (B18)

= (dA − 1)

[∑
k

(|k〉〈k| ⊗ 1)σAA′(|k〉〈k| ⊗ 1)

− 1

dA − 1

∑
k,k′ �=k

(|k〉〈k| ⊗ 1)σAA′(|k′〉〈k′| ⊗ 1)

⎤
⎦ (B19)

= (dA − 1)(F ⊗ I)(σAA′), (B20)

where we set in the last line

F(·) = 1

dA − 1

dA−1∑
m=1

Zm(·)(Zm)†, Z =
dA−1∑
k=0

ωk|k〉〈k|,

ω = e2πi/dA . (B21)

Since F is a completely positive trace-preserving map, the
claim follows. �

Equation (B10) states that the entanglement fidelity quan-
tified by F pg(A|B) lower bounds the guessing probability
P

pg
guess(K|B). By combining (B10) with our uncertainty equal-

ity (6), we get that for subset of size 1 � n < dA + 1 of a
complete set of MUBs,

n∑
θ=1

P pg
guess(K|B� = θ ) = (n − 1)F pg(A|B) + 1 +

[
(dA + 1 − n)F pg(A|B) −

dA+1∑
θ=n+1

P pg
guess(K|B� = θ )

]
(B22)

� (n − 1)F pg(A|B) + 1, (B23)

and this proves (15). Similarly, we can invoke the immediate relation P
pg
guess(K|B) � 1/dA to get

n∑
θ=1

P pg
guess(K|B� = θ ) = dAF pg(A|B) + n − 1

dA

+
[

dA + 1 − n

dA

−
dA+1∑

θ=n+1

P pg
guess(K|B� = θ )

]
(B24)

� dAF pg(A|B) + n − 1

dA

, (B25)

and this proves (14). The tightness of the bounds in (14)
and (15) follows by construction. In the region F pg(A|B) �
1/dA, the upper bound is achieved by a bipartite pure state
whose Schmidt basis is one of the � bases appearing in the sum
of guessing probabilities under consideration, and the lower
bound is achieved by a bipartite pure state whose Schmidt
basis is one of the � bases that belongs to the same complete
MUB set as the bases under consideration, but whose guessing
probability was removed from the sum under consideration.

In the region F pg(A|B) � 1/dA, the upper bound is achieved
by a tensor product state ρA ⊗ ρB such that ρA is diagonal
in one of the � bases appearing in the sum of guessing
probabilities under consideration, and the lower bound is
similarly achieved by such a tensor product state where ρA

is diagonal in one of the � bases that belongs to the same
complete MUB set as the bases under consideration, but
whose guessing probability was removed from the sum under
consideration.
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3. Monogamy of correlations

Here we show (18) from the main text. The precise
statement is as follows.

Corollary 1. Let {�}θ∈� be a complete set of MUBs on
some Hilbert space HA, and denote θ = {|θk〉}dA

k=1. Then, we
have for any tripartite pure quantum state ρABE that

inf
σ

D 1
2

(
ρAE‖1A

dA

⊗ σE

)

= log dA − log
[
(dA + 1)P pg

guess(K|B�) − 1
]
, (B26)

where the infimum is over all quantum states σE , and the
relative Rényi 1/2-entropy is given by

D 1
2

(
ρAE‖1A

dA

⊗ σE

)
= − log

{
tr

[
ρ

1/2
AE

(
1A

dA

⊗ σE

)1/2]}2

.

(B27)

Proof. For any conditional entropy that is invariant under
local isometries on the conditioning system, one can define a
dual entropy. For some generic entropy HK , the dual entropy
H dual

K is defined by

HK (A|B) = −H dual
K (A|E)ρ, (B28)

where E is a system that purifies ρAB . Since H2(A|B) is
invariant under local isometries on B, the dual entropy is well
defined, and it is known that [48]

−H dual
2 (A|E) = inf

σ
D 1

2
(ρAE‖1A ⊗ σE). (B29)

By the standard rewriting,

D 1
2
(ρAE‖1A ⊗ σE) = D 1

2

(
ρAE‖1A

dA

⊗ σE

)
− log dA,

(B30)

the claim follows from our main result (6). �

APPENDIX C: APPLICATIONS

1. Witnessing entanglement

Here we show the origin of (17), our condition for
witnessing entanglement. We will make use of the following
lemma, which says that separable states cannot have a negative
conditional entropy.

Lemma 2. Let ρAB be a separable quantum state. Then, we
have

H2(A|B) � Hmin(A|B) � 0. (C1)

Proof. The inequality H2(A|B) � Hmin(A|B) holds for any
quantum state ρAB since 	

pg
B→A′ in (A3) is a particular map,

and the conditional min-entropy involves an optimization over
all maps 	B→A′ in (A1).

To prove Hmin(A|B) � 0, note that any local operation on a
separable state results in another separable state. Now suppose
σAA′ = (IA ⊗ 	̂B→A′)(ρAB) is the separable state that achieves
the optimization when evaluating the conditional min-entropy
for ρAB [i.e., 	̂ is the optimal channel in (A3)]. Then, we have

F (A|B) = F (�AA′,σAA′) � F (�AA′,1A ⊗ σA′) (C2)

= 1/dA, (C3)

which follows because the fidelity increases upon in-
creasing one of its arguments, and because for separable
σAA′ we have σAA′ � 1A ⊗ σA′ with σA′ = TrA(σAA′). Using
Hmin(A|B) = − log[dAF (A|B)], the claim follows. �

The following is our criterion for witnessing entanglement.
Lemma 3. Let ρAB be a separable quantum state. Let

{Kθ }nθ=1 be a subset (of size n) of a complete set of MUBs
on A, and let {Lθ }nθ=1 be an arbitrary set of n orthonormal
bases on B. Then, we have

n∑
θ=1

2−H2(Kθ |Lθ ) � 1 + n − 1

dA

, (C4)

where

ρKθ Lθ
=

∑
p,q

(|Kθ,p〉〈Kθ,p| ⊗ |Lθ,q〉〈Lθ,q |)ρAB

× (|Kθ,p〉〈Kθ,p| ⊗ |Lθ,q〉〈Lθ,q |). (C5)

Proof. Since ρAB is separable, the previous lemma
(Lemma 2) tells us that F pg(A|B) � 1/dA. Combining this
with the bound in (14), we have

n − 1

dA

+ 1 � (n − 1)F pg(A|B) + 1 (C6)

�
n∑

θ=1

P pg
guess(Kθ |B) (C7)

=
n∑

θ=1

2−H2(Kθ |B) (C8)

�
n∑

θ=1

2−H2(Kθ |Lθ ), (C9)

where the last inequality follows because the conditional Rényi
2-entropy satisfies the data-processing inequality [21]. �

2. Quantum cryptography

Here we show the uncertainty and certainty relations (12)
and (13) in terms of the smooth conditional min-entropy. For a
bipartite quantum state ρAB and smoothing parameter ε � 0,
the smooth conditional min-entropy is defined as

Hε
min(A|B)ρ = sup

ρ̄AB

Hmin(A|B)ρ̄ , (C10)

where the supremum is over all subnormalized states ρ̄AB on
AB that are ε close to ρAB in purified distance [49]. Now, the
crucial point is that Hε

min and H2 are equivalent in the following
sense: it holds for any bipartite quantum state ρAB and ε > 0
that (see, e.g., Lemma A.25 in [50])

Hmin(A|B) � H2(A|B) � Hε
min(A|B) + log

2

ε2
. (C11)

By combining (C11) with our main result (6), we obtain the
uncertainty and certainty relation for the smooth conditional
min-entropy as given in (12) and (13). We note that similar
uncertainty relations have been derived in [18,51], and were
used to analyze security in the noisy storage model.

062127-8



ENTANGLEMENT-ASSISTED GUESSING OF . . . PHYSICAL REVIEW A 90, 062127 (2014)

APPENDIX D: EXTENSIONS OF MAIN RESULT

1. Complex projective 2-designs

We have seen in Appendix A that the proof of our
uncertainty equality (6) crucially relies on the fact that a
full set of MUBs generates a complex projective 2-design.
In general, a complex projective 2-design is a set {|ψy〉}y∈Y

(of size |Y |) of vectors |ψy〉 lying in a Hilbert space HA such
that

1

|Y |
∑
y∈Y

|ψy〉〈ψy |⊗2 = 1

dA(dA + 1)
(1AA′ + FAA′), (D1)

where FAA′ denotes the swap operator, and A′ is a copy
of A. It turns out that there are other “informationally
equivalent” measurements that generate a complex projective
2-design. As an example, we mention SIC-POVMs, such as
the four states forming a tetrahedron on the Bloch sphere for
qubits.

Corollary 2. Let { 1
dA

|ψk〉〈ψk|}d
2
A

k=1 be a SIC-POVM on some
Hilbert space HA. Then, we have for any bipartite quantum
state ρAB that

H2(K|B) = log[dA(dA + 1)] − log(2−H2(A|B) + 1), (D2)

where

ρKB =
d2

A∑
k=1

|k〉〈k| ⊗ TrA

[(
1

dA

|ψk〉〈ψk| ⊗ 1B

)
ρAB

]
(D3)

is a classical-quantum state with {|k〉} an orthonormal basis on
HK .

Notice that the dA-dependent term on the r.h.s. of (D2) is
slightly different from the corresponding term appearing in
our main result (6), and indeed (D2) implies that log dA �
H2(K|B) � 2 log dA for SIC-POVMs. Nevertheless, the proof
of (D2) is identical to the proof of (6), with the appropriate
version of (D1) substituted into the proof.

In addition, so-called unitary 2-designs are closely related
to complex projective 2-designs. A set {Uy}y∈Y (of size |Y |)
of unitaries Uy on some Hilbert space HA forms a unitary
2-design if

1

|Y |
∑
y∈Y

(Uy ⊗ U †
y )⊗2 =

∫
U (dA)

(U ⊗ U †)⊗2dU, (D4)

where the integration is over all unitaries with respect to
the Haar measure. Examples of unitary 2-designs are the
full unitary group, or the Clifford group for qubit sys-
tems. In fact, unitary 2-designs generate complex projective
2-designs.

Lemma 4. Let {Uθ }θ∈� be a unitary 2-design on some
Hilbert space HA. Then, we have

1

dA|�|
dA∑

k=1

∑
θ∈�

(Uθ |k〉〈k|U †
θ )⊗2 = 1

dA(dA + 1)
(1AA′ + FAA′),

(D5)

where {|k〉} denotes some orthonormal basis of HA.
Hence, our main result also holds for unitary 2-designs.
Corollary 3. Let {Uθ }θ∈� be a unitary 2-design on some

Hilbert space HA. Then, we have for any bipartite quantum
state ρAB that

H2(K|B�) = log(dA + 1) − log(2−H2(A|B) + 1), (D6)

where

ρKB� = 1

|�|
∑
θ,k

(|θk〉〈θk| ⊗ 1B)ρAB(|θk〉〈θk| ⊗ 1B) ⊗ |θ〉〈θ |�,

(D7)

and |θk〉 = Uθ |k〉 for some orthonormal basis {|k〉} of HA.

2. More general entropies

Our main result (6) is in terms of the conditional Rényi
2-entropy. However, we can also prove it in terms of a more
general continuous family of conditional 2-entropies. For
ν ∈ [0,1] and bipartite quantum states ρAB , we define

H2,ν(A|B) = − log Tr[ρ†
AB,νρAB,ν], (D8)

where

ρAB,ν = (
1A ⊗ ρ

−(1−ν)/4
B

)
ρAB

(
1A ⊗ ρ

−(1+ν)/4
B

)
. (D9)

It is easily seen that ν = 0 corresponds to the usual
definition (A2) in the main text. We state the generalization of
our uncertainty equality (6) for a full set of MUBs, but note
that it also holds for all other “informationally equivalent”
measurements (cf. Appendix D 1).

Corollary 4. Let {�}θ∈� be a complete set of MUBs on
some Hilbert space HA, and denote θ = {|θk〉}dA

k=1. Then, we
have for any bipartite quantum state ρAB that

H2,ν(K|B�) = log(dA + 1) − log(2−H2,ν (A|B) + 1), (D10)

where

ρKB� = 1

dA + 1

∑
θ,k

(|θk〉〈θk| ⊗ 1B)

× ρAB(|θk〉〈θk| ⊗ 1B) ⊗ |θ〉〈θ |�. (D11)

The proof is obvious by just taking the one for the
conditional Rényi 2-entropy, and replacing ρ̃AB with ρAB,ν .
It is worth noting that (D10) applies to the variant (used in,
e.g., [52,53]),

H2,1(A|B) = − log Tr
[
ρ2

AB

(
1A ⊗ ρ−1

B

)]
. (D12)
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