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Abstract
An efficient implementation ofmanymultiparty protocols for quantumnetworks requires that all the
nodes in the network share a common reference frame. Establishing such a reference frame from
scratch is especially challenging in an asynchronous networkwhere network linksmight have arbitrary
delays and the nodes do not share synchronised clocks. In this work, we study the problemof
establishing a common reference frame in an asynchronous network of n nodes of which atmost t are
affected by arbitrary unknown error, and the identities of the faulty nodes are not known.Wepresent a
protocol that allows all the correctly functioning nodes to agree on a common reference frame as long
as the network graph is complete and notmore than t n 4< nodes are faulty. As the protocol is
asynchronous, it can be usedwith some assumptions to synchronise clocks over a network. Also, the
protocol has the appealing property that it allows any existing two-node asynchronous protocol for
reference frame agreement to be lifted to a robust protocol for an asynchronous quantumnetwork.

1. Introduction

Touse quantum cryptography on a global scale onemustfirst have a functioning quantum internet [1]. Recently
this necessity has inspired a lot of effort in the research and development of satellite [2–6], and ground based [7–
9] quantumnetworks. The possible applications of such networks are not restricted to only cryptography. A fully
general quantumnetworkwill allow us to perform general distributed quantum computing [10–12].

In this work, we study problems related to initialisation and construction of quantumnetworks.More
specifically, we study howwell n nodes in an asynchronous quantumnetwork can agree on a reference frame in
the presence of atmost t arbitrarily faulty nodes among them. By asynchronous networkwemean in this setting
we do not require the nodes to share a clock to beginwith, and the channel delaysmight vary arbitrarily in each
use. In fact, an asynchronous protocol only assumes anymessage sent from a correct node to a correct nodewill
eventually reach the destination, without imposing any bound on the channel delay. This assumption captures
themost general reference frame agreement problem in a quantumnetwork because during the initialisation of
the network the pairwise channel delaysmight be unknown, clocksmight not be synchronised and spatial
reference framesmight be unaligned.

In a quantum channel, the qubits are encoded in some physical degree of freedom. For example, the
polarisation direction of a photon is often used to encode qubits. This requires the sender and receiver to agree
on some set of orthonormal directions as their common spatial reference frame. Another example is the time-
bin qubits, where both of the parties require synchronised clocks. That is, theymust have a pre-agreed temporal
reference frame.

So far these reference frame agreement problems are studied in a bipartite setting [13–19]with the exception
of [20], where spatial direction are agreed on in a synchronised network of n nodes.More specifically in [20] it is
assumed that the network is synchronous. That is, all the nodes of the network have a shared clock and all the
link delays have knownupper bound. The bipartite reference frame agreement problemhave been studied
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extensively (see [21] for a review). However, agreeing on a reference frame in an asynchronous network of n
nodes remained open.

There are protocols that allowBell inequality tests and quantum information exchange between nodes
without a pre-shared reference frame (see, for example [22–24]). However, the ability to reliably share reference
frames amongmultiple nodes gives significant technological advantages by simplifying the implementation of
most protocols.Moreover, reference frame agreement protocols have important implications infields that are
not directly related to quantum information.

One advantage of having an asynchronous reference frame agreement protocol for a networkwith a certain
number of faulty nodes is that once a spatial reference frame is established, then new robust protocols can
potentially be built on top of it to performnetwork-wide clock synchronisation. This is a task important by itself
with various applications in security, navigation andfinance [25]. The primary difficulty of executing any
protocol in an asynchronous network comes from the fact that in the presence of incorrect, that is, arbitrarily
faulty nodes it is impossible to decide for a correct receiver whether amessage is not arriving because the sender
is faulty and not sending anything at all, or the sender is correct but the channel is taking a very long time to
transfer themessage. Therefore, it is nontrivial to decide how long towait for amessage beforemoving on to the
next step of a protocol.

Another difficulty is that unlike in classical information theorywhere information can be represented in bits,
a reference frame can only be transferred from scratch by exchanging systemswhich have an inherent sense of
direction [26]. Examples of such systems are spin qubits and photon polarisation qubits. The receiver can extract
direction information from these systems, for example, by performing tomography on them.While preparing
the direction any node Piwill know the description of the direction as a vector vi in its local frame.Once the
quantum system carrying that direction arrives at a receiverPj, the receiver constructs a representation of the
direction in it’s own local frame as vj. Such an estimation procedure inevitably introduces some error even in
correct transmissions. That is, depending on the precision of the instruments one can only expect to have
d v v,i j  d( ) for some 0d > , where d v v,i j( ) is the Euclidian distance between vi and vj. However, this distance
metric does notmake sense as it is, because vi and vj are vector representations in two different local frames. So
wemust redefine our distancemetric d .,.( )where distance is computed by converting both vectors in the frame
of the first argument. As a result d v v,i j( ) remains a valid distancemeasure even though Pi andPj do not know
each other’s local frame. This computation of distance between two vectors of different reference frames is only
done in the analysis of the protocol and not by the nodeswhile playing the protocol. Any distance computed by a
node inside a protocol is only between vectors for which it has a representation in its local frame. This inherent
imperfection ofmessage transmissionmust be accounted for by any reference frame agreement protocol.We
capture this in the definition as,

Definition 1. For 0h > , a protocol in an asynchronous network of n nodes is an η-asynchronous reference frame
agreement protocol if it satisfies the following conditions.

Termination. Every correct node Pi eventually terminates and outputs a direction vi.

Correctness. If correct node Pi outputs vi and correct node Pj outputs vj then d v v,i j  h( ) .

However, we have to achieve these termination and correctness condition in the presence of incorrect or
faulty nodes. As it is unknownwhich nodes are faulty this resembles the Byzantine fault tolerancemodel [27]
studied in classical distributed computing. For quantumnetworks our assumptions are,

1. The pairwise channels are public. That is, themessages are not secret. As a result, an adversary can see the
content of amessage between two correct nodes and adapt its strategy accordingly.

2. The pairwise channels are authenticated. That is, if a correct node sends amessage to another correct node
themessage cannot be altered by any adversary. However, theremight be channel noises, which can be dealt
with, as in [20].

3. The pairwise channel delaysmight be controlled by the faulty nodes. That is, the faulty nodes can control the
channel delays, even the delays formessage passing between any pair of correct nodes.

4. If a correct node sends amessage to another correct node, then themessage eventually reaches the receiver.
That is, even though the delay is controlled by some adversaries they cannot put infinite delay on themessage
between two correct nodes. However, the delay can be arbitrarily large.

5. The faulty nodesmight have correlated error. To create a protocol which tolerates theworst kind of faults, we
also assume that the faulty nodes can cooperate with each other and have a global strategy to thwart the
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protocol. This is a realistic assumption because some nodes in a regionmight show correlated errorwhich
affects a part of the network.

Under all these assumptionswe give an η-asynchronous reference frame agreement protocol for a network of n
nodes that can tolerate up to t n 4< faulty nodes.We review some preliminaries before presenting themain
results.

2. Preliminaries

The problemof reference frame agreement over an asynchronous quantumnetwork is necessarily
multidisciplinary in nature. That is, it combines various concepts fromquantumphysics, information theory,
cryptography and distributed computing. In this sectionwe introduce several concepts from thesefields that will
be useful throughout this work.

2.1. Reference frame
2.1.1. Spatial reference frame
A spatial reference frame defines a co-ordinate system in space. For example in aCartesian coordinate system,
once theCartesian frame x y z, ,

  ( ) is specified any vector x y zv a b g= + +
  

can be represented as , ,a b g( )
where ,a b and γ are scalers. For two distant parties, who only have the knowledge of their own local frame, it
becomes necessary to establish a shared reference frame before they can successfully communicate spatial
information (such as, location and orientation).

We use quantum communications to send a direction between a sender and a receiver. Any protocol that
allows transmission of direction between two nodeswith δ accuracy is called a 2-party δ-estimate direction
protocol. As an examplewe refer to the protocol 1, 2ED, one of the simplest possible protocols as studied in [13].
Here a sender createsmany identical qubits with their Bloch vector pointing to the intended direction and the
receivermeasures themwith Paulimeasurements. From the statistics of themeasurement outcomes, the
receiver then estimates the Bloch vector’s directionwithin Euclidian distance δwith probability of success
q 1 e m

succ
2 - d-W( ) wherem is the number of qubits exchanged. That is, the Protocol 2ED allows the sender to

transmit a direction uwhich is received as the direction v at the receiver, such that the inequality d u v,  d( )
holds with probability q 1 e m

succ
2 - d-W( ).We emphasise that, this work allows us to lift any twoparty δ-

estimate direction protocol into a protocol for a quantumnetwork of n nodes.

2.1.2. Temporal reference frame
Similar to spatial reference framesmultiple partiesmight need to synchronise their clock rates and time
differences. Once they have established it, we say that they share a temporal reference frame and they are
synchronised in time. Anymultiparty protocol or computation performed by systems that do not share a
temporal reference frame are respectively called asynchronous protocol or asynchronous computation.

2.2. Asynchronous communication
In an asynchronous networkwe assume that the nodes do not share any synchronised clock. And the
communication channel between each pair is such that amessage takes an arbitrary amount of time to propagate
through it. Here the only guarantee is, if amessage is transmitted froma correct node themessagewill eventually
reach to the receiver. Also, a nodemight take an arbitrary amount of time to perform the next step in a protocol.
In this setup, to analyse the time complexity of an asynchronous protocol we only count themaximumnumber
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of steps executed by any node before the protocol completes, and call it the running time of the protocol. The
performance, in terms of execution time, of an asynchronous agreement protocol is determined by its expected
running time. The expectation is thereby taken over all possible random inputs of the nodes, randombits used
by the nodes, as well as all possible randombehaviour of the faulty nodes. The exact probability distributions
may not be known, but the goal is to show that the expected running time is low for all possible distributions.

2.2.1. The asynchronousmessage
In the absence of a synchronised clock, eachmessagemust have a ‘begin’ and ‘end’ tag. Also, depending on the
particular application, amessagemight carry a [type] tag. In our problemwe don’t have a shared reference
frame. For this reason, we cannot use the quantum channel to carry these [type] tags. This requires us to have a
parallel classical channel that uses some classical degree of freedom to carry bits.

We assume that each pair of nodes are connected by an asynchronous public authenticatedCQ-channel
(classical quantum channel), which can send amessage using both classical and quantumdegrees of freedom in
the absence of a shared reference frame. An example of such combinedmessage is shown in table 1where each
quantummessagemq is sandwiched between a classical ‘begin’ and an ‘end’ tag and also accompanied by a
classical type tagmc. The symbol⊥ denotes quantum signals that can be ignored.

The only assumption is the nodes canmatch the classical and quantumparts of themessage.

2.2.2. Asynchronous interactive consistency
Our protocol uses the solution to the following interactive consistency problemwhichwas first proposed by
Pease, Shostak and Lamport [28].

Definition 2. (The Interactive Consistency Problem). Consider a complete network of n nodes inwhich
communication lines are private. Among the nnodes up to tmight be faulty. Let P P P, , , n1 2 ¼ denote the nodes.
Suppose that each node Pi has some private value of informationV V 2i Î ∣ ∣ . The question is whether it is
possible to devise a protocol that, given n t, 0 , will allow each correct node to compute a vector of valueswith
an element for each of the n processors, such that:

1. All the correct nodes compute exactly the same vector.

2. The element of this vector corresponding to a given correct node is the private value of that node.

For an asynchronous network, Ben-Or and El-Yaniv [29] gives a protocol Asynchronous-ICwhich solves
this problem for t n 3< in constant expected time.We use this protocol as a subroutine.

Not that the Asynchronous-IC requires private asynchronous classical channels.Whereas, we only require
public authenticated classical and quantum channels between each pair of nodes in the network. The reason is,
with authenticated public quantum channels each pair of nodes can play 2ED type protocol and establish a
bipartite reference frame.Once the bipartite reference frame is established between each pair using the public
authenticated classical and quantum channels they can performQKDwhich gives them a private classical
channel. So, they can play Asynchronous-IC at a later stage of the protocol.We emphasise that, even thought by
playing pairwise 2ED each honest pair of nodes can share a reference frame between them the goal of this paper is
to have a global shared reference framewhich is non-trivial in the presence of faulty nodes.

3. Results

In this paper we give a protocol that can take any two-party reference frame agreement protocol and lift it up to a
fault tolerantmultiparty reference frame agreement protocol.More specifically, we present thefirst protocol A-
Agreewhich allowsn nodes in a fully connected asynchronous quantumnetwork to agree on a reference frame
in the presence of t n 4< faulty nodes. The result can be summarised in the following theorem.

Table 1.Channel primitive:Amessage

Step Classical Quantum

1 begin ⊥
2 mc mq

3 end ⊥
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Theorem1. In a complete network ofn nodes that are pairwise connected by public authenticated quantum and
classical channels, if a bipartite δ-estimate direction protocol that usesm qubits to achieve success probability
q 1 e m

succ
2 - d-W( ) is used, then protocol A-Agree is a 42d-asynchronous reference frame agreement protocol with

success probability at least 1 e m nlog2- d-W -( ), that can tolerate up to t n 4< faulty nodes.

Note that, here we use theΩ notation. Therefore, the bounds on success probability asymptotically holds for
large enoughm. This is not a drawback because, for example, where photon polarisation is used to carry
directional information, the pulses of polarised light created by the sourcewould contain large number of
photons and allow the protocol to achieve high success probability for a network of an arbitrary size.

The problemof both synchronous and asynchronous agreement on classical bits in the presence of
arbitrarily faulty nodes is extensively studied in classical literature as Byzantine agreement problem [27].
However, we emphasise that a classical protocol cannot be used in our problembecause firstly, unlike classical
network, any communication of direction among correct nodes in a quantumnetworkwill have inherent noises.
As a result any classical protocol would see all the correct nodes as faulty nodes and the protocol will fail.
Secondly, one cannot use the classical protocol directly because one cannot represent a reference frame using
only classical bits [26]. However, classical literature can still informus on important questions such as, how to
achieve constant expected time, how to handle asynchronicity. Some of the approaches of our protocol
regarding these questions are influenced by [30].We also use the interactive consistency protocol by Ben-Or et al
[29] as a subroutine.

Before giving the protocols we first need to define some notation.
w ji [ ] represents a vector received by node Pi fromnode Pj using the bipartite direction estimation protocol.

This vector is representedwith respects toPiʼs local reference frame.
In our protocol sending vtype,( ) to some nodemeans the sender uses a δ-estimate direction protocol to send

the direction v to the receiver. The sender also sends the classical tag [type] associated to this direction. The
receiver will receive an approximation of the sent direction as v¢where d v v,  d¢( ) . Our protocol uses four
different tags as types. They are, init, echo, ready1and ready2.

Next, we fix a notation for a cluster of vectors of certain types where the cluster has a certain cluster centre,
which is the average of the vectors, and a cluster parameter.Wewrite it as C wtypes ,i c

d ([ ] ). Thismeans the
cluster with cluster centrewc is computed and stored by nodePi, has a cluster parameter δ and contains only the
vectors with associated tags in [types]. Here, [types] is a comma separated list of [type]s. The cluster parameter δ
denotes that for all u v C w, types ,i cÎ d ([ ] ) the distance d u v,  d( ) .

For example, C vready , ready ,i c1 2
d ([ ] ) denotes a cluster inwhich each vector has tags ready1or ready2with

cluster centre vc such that u v C v, ready , ready ,i c1 2" Î d ([ ] ), and d u v,  d( ) .

P C wtype ,i c
d( ([ ] )) is the set of all the nodes Pj such that, w j C wtype ,i i cÎ d[ ] ([ ] ). That is, it is the set of node

id’s fromwhich Pi have received the vectors in the cluster C wtype ,i c
d ([ ] ).

Nowwe give our protocol in two steps. First, we give a protocol for asynchronous broadcast, which allows
any sender to securely send a direction to all the other nodes. However, if the sender is faulty the protocolmight
never terminate. Using this as a primitive we later give our asynchronous agreement protocol.

3.1. Asynchronous broadcast
As the name suggests using this protocol a sender node can send somemessage to all the other nodes in an
asynchronous network. Atfirst sight a naive protocol of just sending themessage to all other nodes one by one
seems to be a valid protocol. However, this naive protocol does notwork if the sender intentionally sends
differentmessage to different nodes, which can easily happen in networks with faulty nodes. To guard from it, all
the other nodesmust communicate between each other tomake sure they are receiving the samemessage, or a
close approximation to it. However, as we have atmost t faulty nodes, this verification also becomes tricky. The
whole thing becomesmore challenging because the network is not synchronous. As a result a receiver who is
waiting for amessage, cannot be certainwhether to keepwaiting (because themessagemight be taking a long
time in the channel) ormove on (the sending nodemight be faulty and not sending themessage at all). Our
protocol takes care of all these challenges.

Formally the protocol is defined as,

Definition 3. For 0h > , 0z > , a protocol which is initiated by a sender node Ps, in an asynchronous network of
nnodes, is called a ,h z( )-asynchronous reference frame broadcast protocol if it satisfies the following conditions.
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Termination.

1. If the sender is correct then every correct node eventually completes the protocol.

2. If any correct node completes the protocol, then all the correct nodes eventually complete the protocol.

Consistency. If one correct nodePk outputs a direction vk then all pairs of correct nodes Pi andPj eventually
output directions vi, vjwhere d v v,i j  h( ) .

Correctness. IfPs is correct and broadcasts a direction u and if a correct node Pi outputs vi then d u v, i  z( ) .

We emphasize that the termination condition of asynchronous reference frame broadcast ismuchweaker
than the termination condition of asynchronous reference frame agreement because in the broadcast protocol we
do not require that the correct nodes complete the protocol if the sender is faulty. Also, in an agreement protocol
there is no designated sender node, whereas the broadcast protocol has a sender node.

We achieve asynchronous broadcast by our protocol AR-Cast. The following theorem summarises its
properties.

Theorem2. In a complete network of n nodes that are pairwise connected by public authenticated classical and
quantum channels, if a bipartite δ-estimate direction protocol that usesm qubits to achieve success probability
q 1 e m

succ
2 - d-W( ) is used, then protocol AR-Cast is a 42 , 14d d( )asynchronous reference frame broadcast

protocol, with success probability at least 1 e m nlog2- d-W -( ) that can tolerate up to t n 4< faulty nodes.

The protocol 2: AR-Cast works roughly as follows. In Epoch 0 the sender sends its intended direction to all as
a [init] typemessage. In Epoch 1 all the nodes wait until they receive an [init] from sender or sufficient number of
confirmations fromother nodes that they have received some directions and proceed to the next epoch. This
way, even if some correct node never receives an [init]message, if the other correct nodes are advancing through
the protocol, then this node in Epoch 1will not stay behindwaiting. In Epoch 2 the correct nodes, which have
decided upon a direction, notify the other nodes about their decision by sending ready1or ready2typemessages
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to all. All these previous epochsmake sure that all the correct nodes eventually arrive at Epoch 3 and outputs a
directionwhich satisfies theorem 2. The formal proofs are given in the appendix.

3.2. Asynchronous agreement
Nowwe give ourmain protocolA-Agree which usesAR-Cast as a subroutine and allows the correct nodes in an
asynchronous network to agree on a reference frame.

In Epoch 0 of protocol 3: A-Agree each of the nodes Pi proposes a direction ui, which represents their local
frame. They broadcast this direction usingAR-Cast. All the correct nodes wait for at least t3 1+( ) such
broadcasts to be complete. Then they enter Epoch 1. Since, there are t3 1+( ) correct nodes theywill eventually
arrive at Epoch 1. In this step all the correct nodes create a bit string of length nwhere j’th bit represents if the j’th
AR-Cast has been completed successfully in Epoch 0. Then all the nodes send this bit string to all by playing
Asynchronous-IC. After this they enter Epoch 2. In this Epoch every node has the same set of bit strings. They
now look for the lowest inter k such that at least t 1+( ) bit strings have a 1 in the k’th index of the string. If they
have completed that k’thAR-Cast they output their direction received from that broadcast. If the k’thAR-Cast is
not complete for a node, it waits until it completes and then output. The election of k ensures that at least one
correct node has completed the k’thAR-Cast so byConsistency of asynchronous reference frame broadcast all
the correct nodes will eventually complete the k’thAR-Cast. This ensures that the A-Agree eventually completes.

7
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There is no conditional loop in this protocol and all the subroutines run in constant expected time. So, the A-
Agree is also a constant expected time protocol. The formal proofs are given in the appendix.

4. Conclusion

In this workwe have presented the first asynchronous reference frame agreement protocol. The synchronous
protocol for spatial reference frame agreement presented in [20] can tolerate up to t n 3< faulty nodes.
Whereas, the asynchronous protocol we have presented tolerates only t n 4< faulty nodes. Even thoughwe
pay this extra price in fault tolerance, an asynchronous protocol is a fully general reference frame agreement
protocol. Ifmessage delays are fixed, our protocol can also be used to synchronise clocks [31], which is an
important problem in its own right. There are classical protocols for asynchronous agreement on bits which
achieve t n 3< in constant expected time, it remains open to see if this bound can be achieved by reference
frame agreement protocols for a quantumnetwork.
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Appendix

A.1. Asynchronous reference frame broadcast
Toprove correctness of our AR-Cast we have to prove theorem 2 as repeated here.

Theorem2. In a complete network of n nodes that are pairwise connected by public authenticated quantum and
classical channels, if a bipartite δ-estimate direction protocol that usesm qubits to achieve success probability
q e1 m

succ
2 - d-W( ) is used, then protocol AR-Cast is a 42 , 14d d( )-asynchronous reference frame broadcast

protocol, with success probability at least e1 m nlog2- d-W -( ) that can tolerate up to t n 4< faulty nodes.

For this we observe several properties of protocol 2 in the following lemmas. Thefirst observation is that if
two different correct nodes send [ready1]-typemessages then the direction they send are close to each other with
high probability.

Lemma1. For t n 4< , q0, 0succd > > , if two correct nodes Pi and Pj send ([ready1], u) and ([ready1], v)
respectively, then d u v, 10 d( ) with probability at least q n n

succ

2+ .

Proof. In step 4 of Epoch 2when a [ready1]message is generated there are atmost n initmessages originated

from the sender and atmost n2 echomessages generated by the other nodes. So, with probability at least q n n
succ

2+ all
the transmissionswhich are among correct nodes are successful. Conditioning on this, we prove,

d u v, 10 . 1 d( ) ( )

We show this in two steps. First, we show that there exists a common correct node Pk in P C uecho ,i
4d( ([ ] ))

and P C vecho ,j
4d( ([ ] )), where C uecho ,i

4d ([ ] ) and C vecho ,j
4d ([ ] ) are the cluster of echo type directions

received byPi andPj, respectively . Then using the triangle inequality with the fact that the echo vector from Pk
must be close to both of the cluster centers u and v, we derive inequality(1).

Now, for thefirst step, let us denoteAi andAj to be the set of nodes fromwhich the vectors respectively in
C uecho ,i

4d ([ ] ) and C vecho ,j
4d ([ ] ) have originated. AndBi andBj to be the correct nodes inAi andAj

respectively. Formally,

A P C uecho , , 2i i
4= d( ([ ] )) ( )

A P C vecho , , 3j j
4= d( ([ ] )) ( )

B P P A P: and is correct. , 4i l l i l= Î{ } ( )

B P P A P: and is correct. . 5j l l j l= Î{ } ( )
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Note that at this step A n ti  -∣ ∣ and A n tj  -∣ ∣ .Wewant to show that,

B B . 6i jÇ ¹ Æ ( )

Wedo this by contradiction: let us assume that,

B B . 7i jÇ = Æ ( )

Note that,

A n t 8i  -∣ ∣ ( )
A B B n t, 9i i i  - + -∣ ∣ ∣ ∣ ( )

t B n t, 10i  + -∣ ∣ ( )
B n t2 , 11i  -∣ ∣ ( )
B n n n2 4 2. 12i > - =∣ ∣ ( ) ( )

Here, inequality(10)holds because atmost t of the nodes are faulty. And inequality(12) holds
because t n 4< .

Now,

A A A B A B B B

A B B B

,

, 13
i j i i j j i j

j j i j
È È È È= - -

- + +
∣ ∣ ∣( ) ( ) ∣

∣( )∣ ∣ ∣ ∣ ∣ ( )

A B , 14j i= +∣ ∣ ∣ ∣ ( )

n t n 2, 15> - +( ) ( )
n n n n4 2 5 4 16> - + = ( )

Here, inequality(13) uses inequality(7), inequality(15) follows from the definition from the size ofAj and
inequality(12). And inequality(16) follows because, t n 4< . However, this is a contradiction, because there
are only n nodes in the network. Therefore, we have,

B B . 17i jÇ ¹ Æ ( )

So, there exists a common correct node P B Bk i jÇÎ in P C uecho ,i
4d( ([ ] )) and P C vecho ,j

4d( ([ ] )). Since
Pk is correct, itmust have sent the same echo typemessage to bothPi andPj. So, using the triangle inequality we
have,

d w k w k d w k u d u w k, , , , 18i j i k k j +( [ ] [ ]) ( [ ] ) ( [ ]) ( )

2 . 19d d d+ = ( )

Now inequality(1) follows because,

d u v d u w k d w k w k d w k v, , , , , 20i i j j + +( ) ( [ ]) ( [ ] [ ]) ( [ ] ) ( )

d w k w k4 , 4 , 21i j d d+ +( [ ] [ ]) ( )
4 2 4 10 . 22 d d d d+ + = ( )

Here, inequality(21) follows from the definitions of C uecho ,i
4d ([ ] ) and C vecho ,j

4d ([ ] ) and inequality(22)
follows from inequality(19). ,

In lemma 1we have shown the relation between two [ready1] type directions from two different correct
nodes. Nowwe show that if a correct node sends a [ready1] and another correct node sends a [ready2]type
message then the directions they send are close with high probability. Both of these proofs use similar
techniques.

Lemma2. For t n 4< , q0, 0succd > > , if two correct nodes Pi and Pj send ([ready1],u) and ([ready2],v)
accordingly, then d u v, 10 d( ) with probability at least q n n

succ
2 2+ .

Proof.When a [ready2]message is generated there are atmost n init, n2 echo and in total n2 [ready1]or
[ready2]messages generated in the protocol.With probability at least q n n

succ
2 2+ all the transmissionswhich are

among correct nodes are successful. Conditioning on this, we show that,

d u v, 10 . 23 d( ) ( )

Wedo this in two steps, first we show that there is a common correct node Pk in P C uecho ,i
4d( ([ ] )) and

P C vecho ,j
4d( ([ ] )). Then using the triangle inequality with the fact that both of the cluster centers u and vmust

be close to the echo direction sent from Pkweprove the inequality(23).

9

New J. Phys. 18 (2016) 033018 T Islam and SWehner



Now, for thefirst step, let us denoteAi andAj to be the set of nodes fromwhich the vectors respectively in
C uecho ,i

4d( ([ ] ) and C vecho ,j
4d ([ ] ) have originated. AndBi andBj to be the correct nodes inAi andAj

respectively. Formally,

A P C uecho , , 24i i
4= d( ([ ] )) ( )

A P C vecho , , 25j j
4= d( ([ ] )) ( )

B P P A P: and is correct. , 26i l l i l= Î{ } ( )
B P P A P: and is correct. . 27j l l j l= Î{ } ( )

Note that here A n ti  -∣ ∣ and A n t2j  -∣ ∣ .Wewant to show that,

B B . 28i jÇ ¹ Æ ( )

Wedo this by contradiction: let us assume that,

B B . 29i jÇ = Æ ( )

Note that,

A n t 30i  -∣ ∣ ( )

A B B n t, 31i i i  - + -∣ ∣ ∣ ∣ ( )

t B n t, 32i  + -∣ ∣ ( )

B n t2 , 33i  -∣ ∣ ( )

B n n n2 4 2. 34i > - =∣ ∣ ( ) ( )

Here, inequality(32)holds because atmost t of the nodes are faulty. And inequality(34) holds
because t n 4< .

Now,

A A A B A B B B

A B B B

,

, 35
i j i i j j i j

j j i j
È È È È= - -

- + +
∣ ∣ ∣( ) ( ) ∣

∣( )∣ ∣ ∣ ∣ ∣ ( )

A B , 36j i= +∣ ∣ ∣ ∣ ( )

n t n2 2, 37> - +( ) ( )

n n n n2 2 38> - + = ( )

Here, inequality(37) follows from the definition ofAj and inequality(34). And inequality(38) follows
because, t n 4< . However, this is a contradiction, because there are only n nodes in the network. Therefore, we
have,

B B . 39i jÇ ¹ Æ ( )

So, there exists a common correct nodePk in P C uecho ,i
4d( ([ ] )) and P C vecho ,j

4d( ([ ] )). AsPk is correct, it
must have sent the same echo typemessage to bothPi andPj. So, using the triangle inequality we have,

d w k w k d w k u d u w k, , , , 40i j i k k j +( [ ] [ ]) ( [ ] ) ( [ ]) ( )

2 . 41d d d+ = ( )

Now inequality(23) follows because,

d u v d u w k d w k w k d w k v, , , , , 42i i j j + +( ) ( [ ]) ( [ ] [ ]) ( [ ] ) ( )

d w k w k4 , 4 , 43i j d d+ +( [ ] [ ]) ( )

4 2 4 10 . 44 d d d d+ + = ( )

Here, inequality(43) follows from the definitions of C uecho ,i
4d ([ ] ) and C vecho ,j

4d ([ ] ) and inequality(44)
follows from inequality(41). ,

Nowwe show that all the correct nodes cannot send only [ready2]typemessages. That is, if there exists a
[ready2]message sent from a correct node, then theremust pre-exist a [ready1]message sent from another
correct node.

Lemma3. For t n 4< , q0, 0succd > > , if a correct node Pj sends ([ready2],v), thenwith probability at least
q n n

succ
2 2+ , there exists a correct nodePiwhich has sent ([ready1],u) .

10
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Proof.When a [ready2]message is generated there are atmost n [init], n2 [echo] and in total n2 [ready1]or
[ready2]messages generated in the protocol.With probability at least q n n

succ
2 2+ all the transmissionswhich are

among correct nodes are successful. In this case, just beforemaking the decision to send a ([ready2],v)message
nodePjmust have received at least (t+1) [ready1]or [ready2]messages fromnodes in

P C vready , readyi c
10

1 2
d( ([ ] )). Of these, at least one node—let’s call itPk—is correct. IfPk has also sent a

[ready2]typemessage, we canfind another correct node in its P C vready , readyk c
10

1 2
d( ([ ] )) and so on. This way,

eventually wewillfind a correct nodewho has sent a [ready1]typemessage.
To see this, let us define a directed graph G V E,( )with vertex setV P P: is correcti i= { }, and

E P P P P, : has sent ready after receiving ready or ready from . 45k i k i2 1 2= {( ) } ( )

One can convince oneself thatG is a directed acyclic graph because any cycle in the graphwould violate the
cause and effect relation of the edge directions. Now if we look at the connected component of this
graph containing Pj theremust exist a node Pi in this component with no outgoing edges. BecauseV only
contains correct nodes. This implies Pi is a correct nodewhich has sent a [ready1]typemessage ([ready1],u). This
completes the proof. ,

Now the only thing that remains is to show that two [ready2]type directions sent from two correct nodes are
closewith high probability.

Lemma4. For t n 4< , q0, 0succd > > , if two nodesPi andPj sends ([ready2],u) and ([ready2],v) respectively,
then d u v, 20 d( ) with probability at least q n n

succ
2 2+ .

Proof.When a [ready2]message is generated there are atmost n [init], n2 [echo] and in total n2 [ready1]or
[ready2]messages generated in the protocol.With probability at least q n n

succ
2 2+ all of these transmissionswhich are

between correct nodes are successful. Conditioning on this, we show that, if correct Pi sends ([ready2],u) then
from lemma 3 there exists a correct node Pkwhich has sent ([ready1],w). From lemma 2,

d u w, 10 , 46 d( ) ( )

and

d v w, 10 . 47 d( ) ( )

Using the triangle inequality with thesewe get,

d u v d u w d w v, , , 10 10 20 . 48  d d d+ + =( ) ( ) ( ) ( )

,

Nowwe are ready to prove that our protocol 2 satisfies thefirst termination condition of definition 3.

Lemma5 (Termination 1). For t n 4< , q0, 0succd > > , if the senderPk is correct then the protocol 2AR-Cast

eventually terminates with probability at least q n n
succ

2+ .

Proof.There are atmost n [init]messages, n2 [echo]messages and n2 [ready1]or [ready2]typemessages

exchanged in the protocol.With probability at least q n n
succ

2 2+ all of these transmissionswhich are between correct
nodes are successful. In this case, if the sender is correct all the correct nodes eventually receive [init]messages
that are atmost 2d apart from each other and send an echomessage. So, all the received [echo]messages are at
most 3d apart from the received direction in the [init]message of any correct node. Any node that has sent a
[ready1]typemessagewill go to epoch 3. The faulty nodes cannot stop the [init] and [echo]messages from
correct nodes but they canmanipulate the delays, so that some of the correct nodes send [ready2]typemessages.
After sending the [ready2]these correct nodes will eventually arrive at Epoch 3. From lemmas 1 and 2we can see

that for any correctPi all the received [ready1]and [ready2]directions will be in C vready , ready ,i c
16

1 2
d ([ ] ). And

because there are n t-( ) of themoriginating from the correct nodes the protocol 2 AR-Cast will eventually
terminate. Note that, if the sender is faulty, the definition of ,h z( )-reference frame broadcast protocol
(derinition 3) do not require any termination. ,

Nowwe show that if one correct node outputs a direction, then all the correct nodes eventually output
directions that are close to each other.

11
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Lemma6 (Consistency). For t n 4< , q0, 0succd > > , in protocolAR-cast, if a correct node Pk outputs vk then all
pair of correct nodes P P,i j eventually output v v,i j respectively such that, d v v, 42i j  d( ) with probability at

least q n n
succ

2+ .

Proof.When a [ready2]message is generated there are atmost n init, n2 echo and in total n2 [ready1]or
[ready2]messages generated in the protocol.With probability at least q n n

succ
2 2+ all of these transmissionswhich are

between correct nodes are successful. In this case, we prove,

d v v, 42 , 49i j  d( ) ( )

by showing that the successful completion ofPk implies there are enough echo, [ready1]and [ready2]type
messages generated by correct nodes so that all the other correct nodes eventually receive them and successfully
terminate and each pair of their outputs satisfies inequality(49).

Now, if a correct node Pk outputs vk then this implies it has received at least n t-( ) [ready1]or
[ready2]messages fromnodes in P C vready , ready ,k k

20
1 2

d( ([ ] )), of which at least n t2-( ) are correct.Messages
from these correct nodes eventually reach all the other correct nodes. Also, from lemma 3 there exists a correct
nodewhich has sent a [ready1]messagewhich implies all the correct nodes eventually receive at least n t2-( )
echomessages. That is, all the correct nodes waiting in Epoch 1 or Epoch 2will satisfy the condition of sending a
[ready2]message and go to Epoch 3. Any correct node Pi,Pjwaiting in Epoch 3will eventually receive all the

[ready1]or [ready2]messages sent from correct nodes in P C vready , ready ,i i
20

1 2
d( ([ ] )) and

P C vready , ready ,j j
20

1 2
d( ([ ] )) accordingly, and output vi, vj accordingly.

Nowwe show that P C vready , ready ,i i
20

1 2
d( ([ ] )) and P C vready , ready ,j j

20
1 2

d( ([ ] ))have at least one common
correct node, which implies the cluster centers are close.

To see this note that each of these clusters have at least n t n n n2 2 4 2- > - =( ) ( ) correct nodes. That
ismore than n correct nodes in total. However there are total n nodes in the networks. This implies at least some
of the correct nodes are common in both clusters. LetPl be such a node.

Nowusing triangular inequality we have,

d v v d v v l d v l v

d v v l d v l v

, , ,

, , , 50

i j i i i l

l j j j

 +
+ +

( ) ( [ ]) ( [ ] )
( [ ]) ( [ ] ) ( )

20 20 42 . 51 d d d d d+ + + = ( )

Here inequality(51) follows using lemma 4. ,

Now the second termination condition.

Lemma7 (Termination 2). For t n 4< , q0, 0succd > > , if a correct nodePi completes the protocol then all the

correct nodes complete the protocol with probability at least q n n
succ

2 2+ .

Proof.This lemma is a corollary of lemma 6. Because lemma 6 ensures completionwith probability at least
q n n

succ
2 2+ . ,

Nowwe are ready to prove that our protocol satisfies the correctness condition of definition 3.

Lemma8 (Correctness). For t n 4< , q0, 0succd > > , if a correct senderPs sends (init,u) and a correct node Pi
outputs vi then d u v, 14i  d( ) with probability at least q n n

succ
2 2+ .

Proof.There are atmost n initmessages, n2 echomessages and n2 [ready1]or [ready2]typemessages exchanged

in the protocol.With probability at least q n n
succ

2 2+ all of these transmissions which are between correct nodes are
successful.

In this case we prove the lemma in three steps. First, we show that all the [ready1]type directions sent from
correct nodes are close to u. Secondly, we show that all the [ready2]type directions sent from the correct nodes
are close to u. And finally, from thesewe conclude the proof.

For thefirst step, let us assume that correct node Pihas sent a ([ready1], vi)message in Epoch 2. So, it has
received at least n t-( ) echo typemessages, of which at least n t2-( ) are from correct nodes. Let’s assume for
some correct node Pjw j C vi i i

4Î d[ ] ( ). Since Pj is correct, using the triangle inequality, we have,

d u w j d u u d u w j, , , , 52i j j i +( [ ]) ( ) ( [ ]) ( )

12
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2 . 53 d d d+ = ( )

The diameter of the cluster C vi i
4d ( ) is 4d . So, we have, d v w j, 2i i  d( [ ]) . Using this and(53)with the

triangle inequality, we have,

d u v d u w j d w j v, , , , 54i i i i +( ) ( [ ]) ( [ ] ) ( )

2 2 4 . 55 d d d+ = ( )

Now, for the second step, let us assume that a correct node Pl has sent a ([ready2], vl)message fromEpoch 1
or Epoch 2. So, vl is a cluster center of at least n t2-( ) echo typemessages. Of which at least n t3-( ) are
correct. So, a similar reasoning to the previous step shows,

d u v, 4 . 56l  d( ) ( )

Finally, since the sender is correct from lemma 5we know, all the correct nodes eventually enter Epoch 3 and
successfully complete the epoch.

Let us assume a correct nodePihas received a cluster of [ready1]or [ready2]type directions
C vready , ready ,i c

20
1 2

d ([ ] ) of size at least n t-( ). So, there is a correct node Pk for which
v k C vready , ready ,i i c

20
1 2Î d[ ] ([ ] ). Here, C vready , ready ,i c

20
1 2

d ([ ] ) is a cluster of diameter 20d . So, we have
d v k v, 10i c  d( [ ] ) . Using the triangle inequality with this, and(55) and(56), we have,

d u v d u w k d w k v, , , , 57c i i c +( ) ( [ ]) ( [ ] ) ( )
4 10 14 . 58 d d d+ = ( )

This concludes the proof. ,

Nowwe give an auxiliary lemma that shows how the probability of success scales with the number of nodes
and the success probability of the δ-estimate direction protocol.

Lemma9. If a two-node direction estimation protocol is used that transmitsm qubits to δ approximate a direction
which succeeds with probability q 1 e m

succ  - d-W( )( ) thenwith probability at least q 1 en n m n
succ

2 log2 2 - d+ -W -( ),
all the direction transmissions of init, echo, [ready1]and [ready2]typemessages are successful.

Proof.There are atmost n initmessages, n2 echomessages and n2 [ready1]or [ready2]typemessages exchanged

in the protocol.With probability at least q n n
succ

2 2+ all of these transmissions which are between correct nodes are
successful. Now,

q 1 e , 59n n m n n
succ

2 22 2 2 - d+ -W +( ) ( )( )

n n1 2 e , 60m2 2 - + d-W( ) ( )( )

1 e 61m nlog2 - d-W - ( )( )

Here inequality(60) follows using Bernoulli’s inequality, which is, x rx1 1r + +( ) for all real x 1 -
and integer r 2 . ,

We see that, theorem2 follows from lemma 5–9.

A.2. Asynchronous Agreement
So farwe have presented an asynchronous broadcast protocol where a designated sender initiates the protocol
with a direction. Onemajor weakness of the protocol is that, if the sender is faulty then the protocolmight never
terminate, because in this case the correct nodes cannot decidewhether the sender is faulty and not sending the
[init]message, or correct but very slow.On the other hand, in an asynchronous reference frame agreement
protocol themain goal is to allow the correct nodes to agree on some direction despite the presence of—up to a
certain number of—unidentified faulty nodes in the network. This requires extra caution tomake sure that the
protocol eventually terminates.We show that our protocol 3 A-Agree successfully solves this problemby
proving theorem1.We repeat the theoremhere.

Theorem1. In a complete network ofn nodes that are pairwise connected by public authenticated classical and
quantum channels, if a bipartite δ-estimate direction protocol that usesm qubits to achieve success probability
q 1 e m

succ
2 - d-W( ) is used, then protocol A-Agree is a 42d-asynchronous reference frame agreement protocol with

success probability at least 1 e m nlog2- d-W -( ), that can tolerate up to t n 4< faulty nodes.

13
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There are three epochs in protocol 3. Any correct node that successfully terminatesmust start at Epoch 0 and
terminate at Epoch 3. At each Epoch the nodes inside it, and all themessages transmitted and received by the
nodewhile in that Epoch satisfies some invariance properties.We describe and prove these properties in the
following lemmas.Wefirst show that a correct nodewill eventually enter Epoch 1.

Lemma10. For t n 4< , all the correct nodes eventually enter Epoch1 of A-Agreement with probability at

least q 1 en n m n
succ

2 log2 3 2 - d+ -W -( ).

Proof.Each of the nnodes has initiated anAR-Cast in Epoch 0. Each of theAR-Casts has a success probability at
least q n n

succ
2 2+ . So, with probability at least q n n

succ
22 3+ all the AR-Casts from correct senders are successful. From

lemma 9 this is at least 1 e m nlog2- d-W -( ).
As t n 4< , there are at least t3 1+( ) correct nodeswho initiates AR-Cast as sender. According to theorem2

these t3 1+( )AR-Casts will eventually terminate. So, every correct receiver will eventually receive at least

t3 1+( ) directions and go to Epoch1with probability at least q n n
succ

22 3+ . ,

Each of the correct nodes stores the output of the Asynchronous-IC protocol in an array bi. Here bi can be
seen as an n×nmatrix of bits where row j is received fromnode j.We can observe the following property of this
matrix.

Lemma11. For t n 4< and correct nodePi, after instruction 9 of Epoch1 of A-Agreement, there exists a column in
biwith at least t 1+( ) 1 s in it.

Proof.We show this by a counting argument. Note that a correct node arrives at Epoch1 only after it have
received at least t3 1+( ) directions fromother players. As a result after step 7 of Epoch1 ai contains at least

t3 1+( ) 1ʼs. These aiʼs become the rows of bi after step 9. There are atmost t faulty nodes. So, at least t3 1+( )
rows of bi are originated from correct nodes. Each of these rowsmust contain at least t3 1+( ) 1ʼs. So bihas at
least t3 1 2+( ) 1 s.

However, if no columnhad at least t 1+( ) 1 s, then therewould be atmost t t4 1+ ´( ) 1 s in bi. This
contradicts the fact that bihas at least t3 1 2+( ) 1 s. So, theremust exist a columnwith at least t 1+( ) 1 s in it. ,

We show that all the correct nodes select the same columnwhich has at least t 1+ 1s in it.

Lemma12.After instruction 2 of Epoch2 of A-Agreement, if correct node Pi has ki and correct nodePj has kj,
then ki= kj.

Proof.After completion of protocol Asynchronous-IC in Epoch1, all the correct nodes compute the same
output vector. That is, bi= bj for all correct Pi andPj. Also, from lemma 11we know there exists a column in bi
with at least t 1+( ) 1 s. So, in Epoch2 step 2when correct nodePi andPj selects ki and kj to be the
chronologically smallest column index that has at least t 1+( ) 1 s. They select the same column. i.e., ki= kj. ,

Now that every correct nodePi agrees on a column ki of bi, we observe that.

Lemma13. If a correct node Pi selects ki in instruction 2 of Epoch2, then the AR-Cast initiated by Pki
in Epoch0

eventually completes successfully.

Proof.We show this by showing that at least one correct node has completed the AR-Cast initiated by Pki
. Then

the lemma follows from the termination condition of AR-Cast.
Each row b ji [ ] represents Piʼs knowledge of whichAR-Casts are successfully received by Pj. For example, if

b j l 1i =[ ][ ] , then itmeans node Pj has reported toPi that it has completed the AR-Cast initiated by node Pl in
Epoch0. If there are at least t 1+( ) 1 s in the kith columnof bi, itmeans that there are t 1+( ) nodeswho report
that they have received theAR-Cast initiated by node Pki

in Epoch0. At least one of these reports is from a
correct node. So, from the termination condition of AR-Cast (lemma 6) all the correct nodes eventually
successfully complete theAR-Cast by Pk. ,

Nowwe are ready to prove theorem 1.

14
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Proof.There are atmost nAR-Casts initiated in Epoch0 of which n t-( ) are by correct nodes. From lemma 9

each of these succeedswith probability q 1 en n m n
succ

2 log2 2 - d+ -W -( ). So all the correct AR-Casts succeedwith,

q 1 e , 62n n m n n
succ

2 log2 3 2 - d+ -W -( ) ( )( )

1 e . 63m nlog2 - d-W - ( )( )

Here inequality(63) follows fromBernoulli’s inequality. Conditioned on this we show,
Correctness.Toprove consistencywe show that if a correct node Pi outputs vi and a correct node Pj outputs vj

then d v v, 42i j  d( ) . From step 4 of Epoch2 of A-Agree we see that,

v w k , 64i i i= [ ] ( )
v w k . 65j j j= [ ] ( )

From lemma 6we know that for t n 4< ,

d w k w k, 42 . 66i i j j  d( [ ] [ ]) ( )

Thiswith(64) and(65) gives,

d v v, 42 . 67i j  d( ) ( )

Termination.Toprove terminationwe have to show that every correct node Pi terminates with an output
direction vi.

To prove this we show thatPi eventually completes all the Epochs of A-Agree. From lemma 10we see thatPi
must enter Epoch1 fromEpoch0. All the steps in Epoch1 are of constant expected time. So, a correct nodewill
eventually complete them and go to Epoch2.Only in step 3 of Epoch2Piwaits for completion of AR-Cast from
Pki

. However, from lemma 13we know that this AR-Cast eventually successfully completes. All the other
incomplete AR-Casts are then aborted at step 5 and the protocol terminates with output vi. ,
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