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The joint state of a system that is in contact with an environment is called lazy, if the entropy rate of the

system under any coupling to the environment is zero. Necessary and sufficient conditions have recently

been established for a state to be lazy [Phys. Rev. Lett. 106, 050403 (2011)], and it was shown that almost

all states of the system and the environment do not have this property [Phys. Rev. A 81, 052318 (2010)].

At first glance, this may lead us to believe that low entropy rates themselves form an exception, in the

sense that most states are far from being lazy and have high entropy rates. Here, we show that in fact

the opposite is true if the environment is sufficiently large. Almost all states of the system and the

environment are pretty lazy—their entropy rates are low for any coupling to the environment.

DOI: 10.1103/PhysRevLett.108.070501 PACS numbers: 03.67.Mn, 03.65.Yz, 03.67.Bg

A central question in the study of decoherence and
thermalization is how the entropy of a system S changes
over time when it is in contact with an environment E [1].
The entropy of the system S is thereby typically measured
in terms of the von Neumann entropy HðSÞ ¼
�trð�S log�SÞ, and quantifies the degree of decoherence
of the system [2]. Two extreme cases help to illustrate this
measure: If we initially prepare the system in a known pure
state, then its entropy is HðSÞ ¼ 0—no decoherence has
yet taken place. However, if the system becomes fully
mixed later on, all information about its initial state is
lost, and at this point its entropy scales with its dimension
HðSÞ ¼ logdS. To determine the rate of decoherence, i.e.,
‘‘information loss’’ over time one is interested in the
so-called entropy rate [1]

dHðSÞ
dt

; (1)

of the system evolving according to a coupling
Hamiltonian HSE

�SEðtÞ ¼ expð�iHSEtÞ�SEð0Þ expðiHSEtÞ: (2)

Since the von Neumann entropy HðSÞ also measures the
degree of entanglement between the system and the envi-
ronment, we can equally well think of this quantity as a
measure of the rate at which a particular interaction can
create entanglement between the system and its environ-
ment. Indeed, the value of this derivative at time t ¼ 0 is
more commonly known in the quantum information com-
munity as the entangling rate of a particular coupling
Hamiltonian HSE [3,4].

How large can this entangling rate be? Intuitively, it is
clear that this rate should depend on the interaction
strength between the system and the environment. Note
that we can write any coupling Hamiltonian as

HSE ¼ cISE þHS � IE þ IS �HE þHint; (3)

where c is a constant. Since the noninteracting terms
HS � IE and IS �HE do not contribute to the creation of

entanglement between the system and the environment,
the interaction strength is often measured in terms of
k Hint k1 . That is, in terms of the largest eigenvalue of
Hint. A more involved notion of the interaction strength
will be introduced later on in the paper. Following [3,5–9],
it has been shown [4] that for any pure state SE and
interaction Hamiltonian HSE we have��������

dHðSÞ
dt

��������� c0kHintk1 logdS; (4)

where c0 is a constant. For completeness sake, we provide a
simple proof for c0 ¼ 4 in the Supplemental Material [10].
This bound is essentially optimal, as it was shown that for
any dS � dE there exists a state with a very large entropy
rate. That is, there exists an interaction Hamiltonian HSE

such that its entropy rate isOðkHintk1 logdSÞ, scaling with
the dimension of the system dS.
Are there many states with such high entropy rates?

Recent work [1] tackled the problem of studying entropy
rates from the other end by providing necessary and suffi-
cient conditions for a state SE to have zero entropy rate for
any Hamiltonian HSE at time t ¼ 0 [11]. Such states are
also known as lazy states. In particular, it was shown that a
state �SE is lazy if and only if

½�SE; �S � IE� ¼ 0: (5)

Lazy states do not have to be eigenstates of HSE or Hint,
and have several properties that are of interest when it
comes to suppressing decoherence. In particular, it was
suggested that for a lazy state the entropy of the system
could in principle be preserved by fast measurements or
dynamical decoupling techniques [12–14].
Yet, lazy states are very unusual. In particular, it was

shown [1,15] using the results of [16] that almost no states
are lazy, in the sense that they have a measure of zero on
the joint Hilbert space H S �H E of the system and the
environment [17]. At first glance, this may lead us to
believe that low entropy rates themselves are unusual,
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and that most states should have high entropy rates for at
least some coupling Hamiltonian HSE.

Result.—Here, we show that in fact the opposite is true if
the environment is sufficiently large. Almost all states
of the system and the environment are ‘‘pretty lazy,’’ that
is, the entropy rate on the system is very low for any
coupling Hamiltonian. By low, we mean that the entropy
rate scales as some vanishing parameter " times the inter-
action strength. Note that in contrast to the study of zero
entropy rates, this is all one could hope for when talking
about low entropy rates—a stronger interaction strength
will necessarily increase any nonzero rate.

Our main result that almost all states have low entropy
rates can now be stated slightly more formally. In particu-
lar, we will show that the probability that a randomly
chosen state �SE has a large entropy rate is very small.
That is,

Pr �SE

���������
d

dt
HðSÞ�

���������k Hintk1"
�
� �; (6)

where

" ¼ 2�1=2ðlogdE�3 logdS�4Þ; � ¼ 2e�d2S=16; (7)

and the distribution over the set of possible states on
H S �H E can be any unitarily invariant measure. If the
environment is sufficiently large ( logdE > 3 logdS) and
the system itself is not too small ( logdS > 2), then we
obtain a strong statement. We will furthermore show a
similar bound that is also interesting for extremely small
systems logdS � 2 as long as logdE > ð9=2Þ logdS. In this
case, we have

" ¼ 2�ð1=2Þ½logdE�ð9=2Þ logdS�5�; � ¼ 2e�dSd
1=3
E =16: (8)

Since the Hilbert space dimension grows exponentially
with the number of constituent particles of a physical
system and since we usually assume the environment E
to consist of a large number of particles, at least one of
the dimensional constraints will be fulfilled in typical
situations of physical interest.

It is important to note that while the entropy rate in
general depends on the relation between the Hamiltonian
and the state [see (12)], the condition for a state being lazy
expressed in (5) describes a property of the state alone.
Similarly, given the discussed dimensional constraints, the
very structure of most states �SE is such that they do not
allow a fast change of the entropy in S—even for
‘‘unphysical’’ Hamiltonians HSE.

In the Supplemental Material [10], we show that analo-
gous results can be obtained for the linear entropy or purity,
which has been studied in the context of entropy rates in
[1,18,19]. In this case, we even obtain slightly more
favorable parameters.

Proof.—Let us now see how we can prove the said
results. Our proof proceeds in two steps. First, we recall
that for a randomly chosen pure state fromH S �H E the

state will almost certainly be close to fully mixed on H S,
if the environment is significantly larger than the system
[20]. For completeness, we provide a simpler proof of this
claim in the Supplemental Material [10]. Second, we show
that if a state is close to fully mixed on the systemH S then
it is indeed pretty lazy.
Fully mixed onH S.—Let us first consider only pure

states on H S �H E. Note that choosing a random pure
state according to the Haar measure is equivalent to apply-
ing a randomly chosen unitary U to a fixed starting state,
say, j0iSE. In contrast to [20] our proof (see Supplemental
Material [10]) that such a random pure state is fully mixed
on the system follows by an easy application of the decou-
pling theorem [21,22]. Furthermore, if we apply the de-
coupling theorem, we do not have to restrict to pure states
as in [20]. That is, our statement does not only hold for
most states of the form Uj0ih0jSEUy, but more generally
for most states of the form U�SEU

y where �SE is an
arbitrary state (pure or mixed) on H S �H E.
Equivalently, we may state that most states �SE with given
eigenvalues and randomly chosen eigenstates are close to
fully mixed on the system. ‘‘Randomly chosen’’ here
means that the eigenbasis of �SE is chosen from the Haar
measure, which by definition is unitarily invariant. Since
our assertion holds for any fixed set of eigenvalues, it
also holds if we pick �SE from any unitarily invariant
measure on SðH S �H EÞ, the set of density operators
on H S �H E. Summarizing, we obtain the following
little lemma, which is proven in the Supplemental
Material [10].
Lemma 1.—For a bipartite system H S �H E

Pr �SE

�������S � IS
dS

�����
1

� �

�
� �; (9)

where the probability is computed over the choice of �SE

from any unitarily invariant measure on SðH S �H EÞ,
and where we may choose either

� ¼ 2�ð1=2ÞðlogdE�logdS�4Þ; � ¼ 2e�d2S=16; (10)

or

� ¼ 2�ð1=3Þ½logdE�ð3=2Þ logdS�5�; � ¼ 2e�dSd
1=3
E =16:

(11)

Pretty lazy for the von Neumann entropy.—Let us now
turn to the main part of our proof. A small calculation [1]
shows that the rate of change of the von Neumann entropy
is given by

dHðSÞ
dt

¼ �itrðHint½logf�SðtÞg � IE; �SEðtÞ�Þ: (12)

Note that ½logð�SÞ � IE; �SE� ¼ 0 if and only if (5) holds,
and thus the latter is a sufficient condition for a state �SE to
be lazy [1]. Consider now a state �SE such that its reduced
state �S ¼ trEð�SEÞ ¼ IS=dS is fully mixed. Clearly, any
such state satisfies (5) and is a lazy state.
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How about states which are merely close to being fully
mixed on H S? The following lemma captures our
intuition that states which are close to lazy states on H S

are in fact pretty lazy themselves. Closeness is measured in
terms of the trace distance [23] which is the relevant
quantity for distinguishing to quantum states [24].

Lemma 2.—Consider a Hamiltonian with interaction
strength kHintk1. For any quantum state �SE on HSE

such that its reduced state is � close to fully mixed, i.e.,
� ¼ k�S � IS=dSk1 where � � 1=dS with dS � 2, its en-
tropy rate is bounded by��������

dHðSÞ
dt

��������� kHintk12dS�: (13)

Proof.—Using (12) we can upper bound the entropy rate by��������
dHðSÞ
dt

��������� kHintk1k½logð�SÞ � IE; �SE�k1; (14)

¼ kHintk1
�����
��
logð�SÞ � log

�
IS
dS

��
� IE; �SE

������
1

; (15)

� 2 k Hintk1
�����
�
logð�SÞ � log

�
IS
dS

��
� IE

�����1k�SEk1; (16)

¼ 2kHintk1
�����logð�SÞ � log

�
IS
dS

������1; (17)

where (14) follows from the fact that for any bounded
operators A and B

jtrðABÞj � trjABj ¼ kABk1 �k Ak1kBk1; (18)

(16) follows from the convexity of the L1-norm, and (17)

follows from the definition of the L1-norm kAk1 ¼
tr

ffiffiffiffiffiffiffiffiffi
AyA
p

. Now, let fpigdSi¼1 denote the eigenvalues of �S, so��������
dHðSÞ
dt

��������� 2kHintk1maxdSi¼1j logðpidSÞj: (19)

We want to maximize the right-hand side (rhs) of (19) for
fixed

� ¼
������S � IS

dS

�����
1

¼XdS
i¼1

��������pi � 1

dS

��������: (20)

Without loss of generality, let p1 denote the smallest
eigenvalue and p2 the largest, so p1 � 1

dS
� p2. The quan-

tity j logðpidSÞj in (19) is monotonically decreasing in pi if
0 � pi � 1

dS
and monotonically increasing if 1

dS
� pi � 1.

The following procedure therefore allows us to increase the
rhs of (19) while keeping � constant: For all 3 � i � dS, if
pi <

1
dS

replace p1 � p1 þ pi � 1
dS

and pi �
1
dS
. For all

3 � i � dS, if pi >
1
dS

replace p2 � p2 þ pi � 1
dS

and

pi �
1
dS
. We end up with p1 ¼ 1

dS
� �

2 , p2 ¼ 1
dS
þ �

2 ,

pi ¼ 1
dS

for 3 � i � dS. For � � 0 we have

j logðp1dSÞj � j logðp2dSÞj; (21)

so that

��������
dHðSÞ
dt

��������� 2kHintk1j logðp1dSÞj; (22)

¼ 2kHintk1
��������log

��
1

dS
� �

2

�
dS

���������; (23)

¼ 2kHintk1
�
� log

�
1� 1

2
dS�

��
: (24)

Let us now upper bound the term on the rhs Note that
for 0 � x � 1

2 the function fðxÞ :¼ � logð1� xÞ is well

defined and convex. By convexity we thus have fðxÞ �
2fð12Þx ¼ 2x on the interval, and hence for x ¼
ð1=2ÞdS� � 1=2 we have

� log

�
1� 1

2
dS�

�
� dS�: (25)

Upper bounding (24) using (25) now leads to the claimed
result. h
Our claim that almost all states are pretty lazy now

follows immediately by combining the two lemmas.
Lemma 1 tells us that the probability that a randomly
chosen state �SE is � close to maximally mixed on H S

is extremely high, where � ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dS=dE

p
and � ¼

2
ffiffiffiffiffi
dS
p

=
ffiffiffiffiffiffi
dE

3
p

respectively. Lemma 2 now tells us that for
sufficiently large dE such states are indeed pretty lazy. The
values for " in (6) are dS�.
Interaction strengths.—For completeness, we discuss

how our bounds can be improved by a more refined mea-
sure of interaction strength. First of all, note that the
operators HS and HE in (3) are not unique and freedom
in their choice may be used to minimize kHintk1. Finding
the optimal operators HS and HE forms in general a non-
trivial endeavor. Here, we do not deal with this general
task but ask how to best define the ‘‘interaction strength’’
for a given operator Hint. Indeed, the decomposition (3)
does become unique if we require HS and HE to be
traceless and Hint to have vanishing partial traces on
both S and E (e.g., [1,25]). We can now measure the
interaction strength as

�ðHintÞ :¼ 2min�2RkHint � �ISEk1: (26)

First, note that shifting all energy levels of a certain
system by a constant amount does not affect the dynamics
of that system. These only depend on the differences
between the energy eigenvalues. The quantity Hint as
defined in the decomposition (3) is indeed invariant under
addition of a multiple of ISE to HSE. Similarly, we can see
from (12) that adding a multiple of ISE to Hint alone does
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not affect the rate of change of the local entropy. For this
reason, the quantity �ðHintÞ defined in (26) provides a
more robust measure of the ‘‘interaction strength’’ of HSE

than kHintk1, as it is already invariant under a shift of
eigenvalues in Hint. From (26) we furthermore see that
this quantity can easily be computed using a semidefinite
program [26] since we may also write �ðHintÞ ¼ 2�
where � is the solution of the following semidefinite
program

minimize � subject to�I � Hint � �I � ��I;

where the minimization is taken over variables � and �.
Since �ðHintÞ equals the difference between the smallest
and largest eigenvalue of Hint we have �ðHintÞ �
2kHintk1. An upper bound on the entangling rate which
is proportional to kHintk1 may therefore be strengthened
by noting that we may replace Hint by Hint � �I without
affecting time scales. This allows us to replace kHintk1 by
1
2 �ðHintÞ in all the bounds if desired.

Discussion.—We have shown that almost all states of the
system and the environment are, in fact, pretty lazy. If
the environment E is sufficiently larger than our system
S—which we assume to be the case in physical scenarios—
the vast majority of bipartite states is such that their
entropy in S can only be changed at a vanishing rate. The
relevant time scale is thereby given by the inverse of the
interaction strength kHintk1. Our results should be com-
pared to [25,27] in which it was shown that equilibration is
a generic property of pure states on H S �H E if E is
sufficiently larger than S. That is, under this condition
almost all joint initial states will lead to the state of S
being close to its temporal average for most times.
Furthermore, it is shown in [25] that for almost all joint
initial states, the rate of change of S (the speed of the
fluctuations around the temporal average, that is) will on
average be small. The time scale that the speed of
fluctuations is compared to is here given by kHS � IE þ
Hintk1. While only Hint is able to create entanglement
between S and E, both Hint and HS � IE are relevant for
the evolution of the state of S. If the rate of change of
the state of S is low, this implies by Fannes’ inequality
[23] that the rate of change of the von Neumann entropy
is low as well. So while the results of [25,27] imply that
most initial states will lead to entropy rates on S, which
in a long-time temporal average are low, we show that
most bipartite states really are such that the entropy rates
on S are low for any interaction Hamiltonian.
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