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A violation of the uncertainty principle implies a
violation of the second law of thermodynamics
Esther Hänggi1 & Stephanie Wehner1

Uncertainty relations state that there exist certain incompatible measurements, to which the

outcomes cannot be simultaneously predicted. While the exact incompatibility of quantum

measurements dictated by such uncertainty relations can be inferred from the mathematical

formalism of quantum theory, the question remains whether there is any more fundamental

reason for the uncertainty relations to have this exact form. What, if any, would be the

operational consequences if we were able to go beyond any of these uncertainty relations?

Here we give a strong argument that justifies uncertainty relations in quantum theory by

showing that violating them implies that it is also possible to violate the second law of

thermodynamics. More precisely, we show that violating the uncertainty relations in quantum

mechanics leads to a thermodynamic cycle with positive net work gain, which is very unlikely

to exist in nature.
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M
any features commonly associated with quantum
physics, such as the uncertainty principle1 or non-
locality2, appear highly counter-intuitive at first sight.

The fact that quantum mechanics is more non-local than
any classical theory2, but yet more limited3,4 than what the
no-signalling principle alone demands5–7 has been the subject of
much investigation8–12. Several reasons and principles were put
forward that explain the origin of such quantum mechanical
limits10–12.

In ref. 12, it was shown that the amount of non-locality in
quantum mechanics is indeed directly related to another
fundamental quantum mechanical limit, namely the uncertainty
principle1. This forged a relation between two fundamental
quantum mechanical concepts. We may however still ask why the
uncertainty principle itself is not maybe stronger or weaker than
predicted by quantum physics?—and, what would happen if it
was?

Here we relate this question to the second law of thermo-
dynamics. We show that any violation of uncertainty relations in
quantum mechanics (even if the violation is quantitatively small)
also leads to a violation of the second law.

Results
Fundamental concepts. To state our result below, we need to
explain three different concepts. First, we need some properties of
generalized physical theories (for example, refs 13–17). Second,
we recall the concept of uncertainty relations, and finally the
second law of thermodynamics.

General theories. Although it is not hard to prove our result for
quantum theory, we extend our result to some more general
physical theories. These are described by a probabilistic frame-
work that makes the minimal assumptions that there are states
and measurements, which can be made on a physical system
(for example, refs 18,19). Even for general theories, we denote a
state as r 2 O, where O is a convex state space. In quantum
mechanics, r is simply a density matrix. The assumption that the
state space is convex is thereby generally made17 and says that if
we can prepare states r1 and r2, then the probabilistic mixture
r¼r1=2þ r2=2 prepared by tossing a coin and preparing r1 or
r2 with probability 1=2 each is also an element of O. A state is
called pure if it cannot be written as a convex combination of
other states. Measurements consist of linear functionals ej : O!
½0; 1� called effects. We call an effect ej pure if it cannot be written
as a positive linear combination of any other allowed effects.
Intuitively, each effect corresponds to a possible measurement
outcome, where pðej jrÞ¼ ejðrÞ is the probability of obtaining
‘outcome’ ej given the state r. More precisely, a measurement is
thus given by e¼fej j

P
j pðej jrÞ¼ 1g. For quantum mechanics,

we will simply label effects by measurement operators. For
example, a projective measurement in the eigenbasis f0Z; 1Zg of
the Pauli Z operator is denoted by pð0Z jrÞ¼ trð 0Zih0Zj jrÞ. The
assumption that effects are linear, that is, pðej jrÞ is linear in r, is
essentially made for all probabilistic theories17 and says that when
we prepared a probabilistic mixture of states, the distribution of
measurement outcomes scales accordingly.

Uncertainty relations. A modern way of quantifying uncer-
tainty20,21 is by means of entropic uncertainty relations (see ref.
22 for a survey), or the closely related fine-grained uncertainty
relations12. Here, we will use the latter. As for our cycle, we will
only need two measurements with two outcomes, and each
measurement is chosen with probability 1=2, we state their
definition only for this simple case. Let f ¼ff0; f1g and

g¼fg0; g1g denote the two measurements with effects fy1 and
gy2 , respectively. A fine-grained uncertainty relation for these
measurements is a set of inequalities

f8r :
1
2

pðfy1 jrÞþ pðgy2 jrÞ
� �

� z~y ~y 2 f0; 1g2�� g: ð1Þ

To see why this quantifies uncertainty, note that if z~y o 1 for
some~y¼ðy1; y2Þ, then we have that if the outcome is certain for
one of the measurements (for example, pðfy1 jrÞ¼ 1), it is
uncertain (pðgy2 jrÞo 1) for the other. As an example from
quantum mechanics, consider measurements in the X¼f0X ; 1Xg
and Z¼f0Z; 1Zg eigenbases (we use the common convention of
labelling the X and Z eigenbases states as fj þ i ;j � i g and
fj0 i ;j1 i g, respectively). We then have for all pure quantum
states r

1
2

pð0X jrÞþ pð0Z jrÞð Þ � 1
2
þ 1

2
ffiffiffi
2
p : ð2Þ

The same relation holds for all other pairs of outcomes
ð0X ; 1ZÞ, ð1X ; 0ZÞ and ð1X ; 1ZÞ. Depending on~y, the eigenstates of
either ðXþZÞ=

ffiffiffi
2
p

or ðX�ZÞ=
ffiffiffi
2
p

saturate these inequalities.
A state that saturates a particular inequality is also called a
maximally certain state12.

For any theory such as the quantum mechanics, in which there
is a direct correspondence between states and measurements,
uncertainty relations can also be stated in terms of states instead
of measurements. More precisely, uncertainty relations can be
written in terms of states if pure effects and pure states are dual to
each other in the sense that for any pure effect f there exists a
corresponding pure state rf , and conversely for every pure state s
an effect es such that pðf jsÞ¼ pðes jrf Þ. Here, we restrict
ourselves to theories that exhibit such a duality. This is often (but
not always) assumed17,19. As a quantum mechanical example,
consider the effect f ¼ 0X and the state s¼ 0ih0j j. We then
have pðf jsÞ¼ trð þ ihþj jsÞ¼ trð þ ihþj j 0ih0j jÞ ¼ pðes jrf Þ with
rf ¼ þihþj j and es¼ 0Z .

For measurements f ¼ff0; f1g and g¼fg0; g1g consisting of
pure effects, let frf0

; rf1
g and frg0

; rg1
g denote the corresponding

dual states. The equation 1 then takes the dual form

8 pure effects e :
1
2

pðe jrfy1
Þþ pðe jrgy2

Þ
� �

� z~y: ð3Þ

For our quantum example of measuring in the X and Z
eigenbasis, we have r0X

¼ þihþj j, r1X
¼ �ih�j j, r0Z

¼ 0ih0j j
and r1Z

¼ 1ih1j j. We then have that for all pure quantum effects e

1
2

pðe jr0X
Þþ pðe jr1Z

Þ
� �

� 1
2
þ 1

2
ffiffiffi
2
p : ð4Þ

The same relation holds for all other pairs ð0X ; 1ZÞ, ð1X ; 0ZÞ
and ð1X ; 1ZÞ. Again, measurement effects from the eigenstates of
either ðXþZÞ=

ffiffiffi
2
p

or ðX�ZÞ=
ffiffiffi
2
p

saturate these inequalities. In
analogy, with maximally certain states, we refer to effects that
saturate the inequalities (3) as maximally certain effects. From
now on, we will always consider uncertainty relations in terms of
states.
Second law of thermodynamics. Finally, the second law of
thermodynamics is usually stated in terms of entropies. One way
to state it is to say that the entropy of an isolated system cannot
decrease. These entropies can be defined for general physical
theories, even for systems that are not described by the quantum
formalism19,23,24 (Supplementary Methods). However, for our
case, it will be sufficient to consider one operational consequence
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of the second law of thermodynamics25,26: there cannot exist a
cyclic physical process with a net work gain over the cycle.

Main findings. Our main result is that if it was possible to violate
the fine-grained uncertainty relations as predicted by quantum
physics, then we could create a cycle with net work gain. This
holds for any two projective measurements with two outcomes on
a qubit. By the results of ref. 12, which showed that the amount
of non-locality is solely determined by the uncertainty relations of
quantum mechanics and our ability to steer, our result extends to
a link between the amount of non-locality and the second law of
thermodynamics (note that there is no violation of uncertainty
classically, it is rather that classical measurements have at most
probabilistic notions of uncertainty to begin with).

In the following, we focus on the quantum case, that is, in the
situation where all the properties except the uncertainty relations
hold as for quantum theory. In the Supplementary Methods, we
extend our result to more general physical theories that satisfy
certain assumptions. In essence, different forms of entropies
coincide in quantum mechanics, but can differ in more general
theories19,23,24. This has consequences on whether a net work
gain in our cycle is due to a violation of uncertainty alone, or can
also be understood as the closely related question of whether
certain entropies can differ.

Let us now first state our result for quantum mechanics more
precisely. We consider the following process as depicted in Fig. 1.
We start with a box, which contains two types of particles
described by states r0 and r1 in two separated volumes. The state
r0 is the equal mixture of the eigenstates rf0

and rg0
of two

measurements (observables) f ¼ff0; f1g and g¼fg0; g1g. The
state r1 is the equal mixture of rf1

and rg1
. We choose

the measurements such that the equal mixture r¼ðr0þ r1Þ=2
is the completely mixed state in dimension 2. We then replace the
wall separating r0 from r1 by two semi-transparent membranes,
that is, membranes which measure any arriving particle in a
certain basis e¼fe0; e1g and only let it pass for a certain
outcome. In the first part of the cycle, we separate the two
membranes until they are in equilibrium, which happens when
the state everywhere in the box can be described as r. Then, in the

second part of the cycle, we separate r again into its different
components.

We find that the total work, which can be extracted by
performing this cycle is given by

DW¼NkT ln 2
X1

i¼ 0

piSðriÞ�
1
2

H zðf0;g0Þ
� �

� 1
2

H zðf1;g1Þ
� � !

:

ð5Þ

Here, SðrÞ¼ � trðr logrÞ is the von Neumann entropy of the
state. The entropy H appearing in the above expression is simply
the Shannon entropy of the distribution over measurement
outcomes when measuring in the basis f and g, respectively (the
Shannon entropy of a probability distribution fp1; . . . ; pdg is
given by Hðfp1; . . . ; pdgÞ¼ �

P
j pj log pj. All logarithms in this

paper are to base 2).
Example. To illustrate our result, consider the concrete quantum
example, where the states are given by

r0¼
1
2

r0X
þr0Z

� �
¼ 1þ XþZ

2

2
and

r1¼
1
2

r1X
þr1Z

� �
¼ 1� XþZ

2

2
:

ð6Þ

The work that can be extracted from the cycle then becomes

DW¼NkT ln 2 H
1
2
þ 1

2
ffiffiffi
2
p

� 	
� 1

2
H zð0X ;0ZÞ
� �

� 1
2

H zð1X ;1ZÞ
� �� 	

: ð7Þ

The fine-grained uncertainty relations predict in the quantum
case that zð0X ;0ZÞ and zð1X ;1ZÞ are at most 1

2 þ 1
2
ffiffi
2
p . We see that a

theory, which can violate this uncertainty relation, that is, reach a
larger value of z, would lead to DW 4 0—a violation of the
second law of thermodynamics.

Discussion
We give a strong argument why quantum mechanical uncertainty
relations should not be violated. Indeed, as we show, a violation of

a b c

f e d

Figure 1 | The impossible process. At the start (a), two states r0 and r1 are in separated volumes, containing a total of N such states, N/2 in r0 and N/2 in

r1. Second (b), the wall separating them is replaced by two semi-transparent membranes, of which M0 is transparent for j~e1i and M1 for j~e0i. These

membranes then move apart until they reach their position at equilibrium (c). This happens when the state in the entire volume can be described by the

mixture r. New membranes are inserted on the side, and the state r¼Sj qj|sjS/sj| is then (d,e) separated into its pure components sj by membranes,

which are exactly opaque to sj. In panel f, the volumes are then further subdivided to obtain sizes proportional to r0
j and r1

j , that is, the weights occuring in

the eigen decomposition of r0 ¼
P

jr
0
j jt0

j iht0
j j and r1¼

P
jr

1
j jt1

j iht1
j j. We then unitarily transform the pure component sj in each volume into the

corresponding pure component t0
j or t1

j of r0 and r1. Finally, the components of r0(r1) are mixed to reach the initial configuration (a).
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the uncertainty relations would lead to an ‘impossible machine’,
which could extract net work from a cycle. Our result extends to
more general theories than quantum theory—however, it raises
the question of which general form of entropy19,23,24 is most
significant. In quantum mechanics, the different entropies of refs
19,23,24 coincide, meaning that if a physical theory is just like
quantum mechanics, but with a different amount of uncertainty,
net work can be extracted.

We note that of course the quantum mechanical uncertainty
relations are a consequence of the mathematical formalism of
quantum mechanics. In fact, it is clear from equation 1 that this is
the case for all theories. Violating uncertainty relations is thus
definitely not consistent with the remainder of a fixed physical
theory. Note, however, that the aim of our work is to understand
the physical implications of such mathematical boundaries.
We show that a violation of uncertainty would have consequences
that have a real physical impact on the world around us. Needless
to say, ‘breaking’ quantum mechanics in this way may have many
other consequences as well—the one demonstrated was simply a
rather tangible one.

We would like to emphasize that thermodynamical cycles have
been useful before to examine foundational questions and our
cycle is indeed similar to the ones given in refs 25–28. Our
contribution lies in the insight that a violation of uncertainty
relation allows for the construction of a similar (but not identical)
cycle. To explain this relation, let us first consider our result from
the perspective of information. We can understand uncertainty
relations as given in equation 1 as imposing a limit on how well
one of the several bits of information can be extracted from a
qubit using the given measurements12. As explained in ref. 12,
these uncertainty relation do have an immediate operational
interpretation as the average success probability of retrieving
individual bits from a bit string, where the average is taken over
the choice of bit we want to retrieve. This means that the amount
of uncertainty for all pairs of measurements that we could make
directly imposes a limit on how much classical information we
can store in each qubit. Indeed, in any system that is finite
dimensional (possibly due to an energetic constraint), it is thus
clear that the mere fact that we can only store a finite amount of
information in a finite dimensional system (Holevo’s bound29)
demands that non-commuting measurements obey uncertainty
relations. Otherwise, we could use these measurements to extract
more information from the storage system. This shows that our
example is closely related to the ones given in refs 26,28,30,31,
where it has been shown that if it was possible to encode more
than one bit of information in a qubit and therefore to violate the
Holevo bound29, then it was also possible to violate the second
law of thermodynamics.

All these works use a similar cycle than the one proposed in refs
25,27 (see also ref. 32), which showed that there exists a cycle that
leads to an overall net work gain if it was possible to distinguish two
non-orthogonal states perfectly. Intuitively, the possibility of
distinguishing non-orthogonal states is again directly related to
the question of how much information we can store in a quantum
state and is thus in spirit similar to the works of refs 26,28,30,31.
Note that for our purpose we need a slightly more refined cycle and
analysis, as we do not want to start with an assumption that non-
orthogonal states can be distinguished perfectly. Our cycle shows
that one does not need to be able to distinguish the non-orthogonal
states perfectly, but that a contradiction can be derived as soon as
one can distinguish better than allowed by quantum theory. We
then forge a quantitative link between the question of how well we
can distinguish non-orthogonal states and the violation of
uncertainty relations to obtain our result.

In future work, it might be interesting to investigate whether
an implication also holds in the other direction. Does any

violation of the second law lead to a violation of the uncertainty
relations?

We have investigated the relation between uncertainty and the
second law of thermodynamics. A concept related to uncertainty
is the one of complementarity. It is an open question, whether a
violation of complementarity could also be used to build such an
‘impossible machine’.

Methods
We now explain in more detail how we obtain the work, which can be extracted
from the cycle in quantum mechanics. In the Supplementary Methods, we consider
the case of general physical theories.

First part of the cycle. For the first part of the cycle, we start with two separate
parts of the box in each of which there are N=2 particles in the states r0 and r1,
respectively. These states are described by

r0 ¼
1
2

rf0
þrg0

� �
and

r1 ¼
1
2

rf1
þrg1

� �
;

ð8Þ

where f ¼ff0; f1g and g¼fg0; g1g are chosen such that the state r¼r0=2þ r1=2
corresponds to the completely mixed state in dimension 2. We then make a pro-
jective measurement e¼fe0; e1g with two possible outcomes denoted by 0; 1. More
precisely, we insert two semi-transparent membranes instead of the wall separating
the two volumes. One of the membranes is transparent to e0 but completely opaque
to e1, while the other lets the particle pass if the outcome is e1, but not if it was e0.
Letting these membranes move apart until they are in equilibrium, we can extract
work from the system. The equilibrium is reached when on both sides of the
membrane, which is opaque for e1, there is the same density of particles in this state
and similarly for the membrane, which is opaque for e0.

The work that can be extracted from the first part of the cycle (that is, by going
from (a) to (c) in Fig. 1) is given by the following (Supplementary Methods).

W¼NkT ln 2 1� 1
2

H
1
2

p e0 jrf0

� �
þ 1

2
p e0 jrg0

� �� 	�

� 1
2

H
1
2

pðe1 jrf1
Þþ 1

2
pðe1 jrg1

Þ
� 		

� NkT ln 2 1� 1
2

H zðf0 ;g0Þ
� �

� 1
2

H zðf1 ;g1Þ
� �� 	

;

ð9Þ

where we denoted by z the fine-grained uncertainty relations. The inequality can be
saturated by choosing e0 and e1 to be maximally certain effects (it is easy to see that
in quantum mechanics the maximally certain effects e0 and e1 do indeed form a
complete measurement in dimension 2). Note that our argument is not specific to
the outcome combination ð0f ; 0gÞ and ð1f ; 1gÞ used in the the fine-grained
uncertainty relation and choosing the remaining two inequalities corresponding to
outcomes ð0f ; 1gÞ and ð1f ; 0gÞ leads to an analogous argument.

Example: for our quantum example given by the states (6), we obtain

W � NkT ln 2 1� 1
2

H zð0X ;0Z Þ
� �

� 1
2

H zð1X ;1Z Þ
� �� 	

: ð10Þ

Equality is attained by taking fe0; e1g to be the maximally certain effects given by
the two eigenstates of ðXþZÞ=

ffiffiffi
2
p

.

Second part of the cycle. In the second part, we form a cycle (that is, we go
from (c) to (a) in Fig. 1 via (d) to (f)). We start with the completely mixed
state r. Denote the different pure components of r by fqj; sjgj , that is, r¼

P
j qjsj .

We can now ‘decompose’ r into its components by inserting a semi-transparent
membrane, which is opaque for a specific component sj , but completely trans-
parent for all other components, as depicted in Fig. 1d. Effectively, this membrane
measures using the effects hsj that are dual to the states sj. This membrane is used
to confine all states sj in a volume qjV . This is done for all components and we end
up with a box where each component of r is sorted in a volume proportional to its
weight in the convex combination (Fig. 1e)). This process needs work proportional
to SðrÞ.

In a second step (see f) in (Fig. 1), we create the (pure) components t of
r0 ¼

P
j r0

j t
0
j and r1 ¼

P
j r1

j t
1
j from the pure components of r and then

‘reassamble’ the states r0 and r1. To do so, we subdivide the volumes containing sj

into smaller volumes, such that the number of particles contained in these smaller
volumes are proportional to p0r0

j and p1r1
j . The pure state contained in each small

volume is then transformed into the pure state t0
j or t1

j . As these last states are also
pure, no work is needed for this transformation. Finally, we ‘mix’ the different
components of r0 together, which allows us to extract work p0Sðr0Þ. Similarly,
we obtain work p1Sðr1Þ from r1.
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In total, the transformation r! fpi; rig, needs work

W¼NkT ln 2ðSðrÞ�
X

i

piSðriÞÞ: ð11Þ

Example: returning to the example above and using that the two eigenvalues
of r are 1=2, we obtain

SðrÞ¼ � 2 � 1
2

log2
1
2
¼ 1: ð12Þ

Both r0 and r1 have the two eigenvalues f1
2 þ 1

2
ffiffi
2
p ; 1

2 � 1
2
ffiffi
2
p g. Therefore,

SðriÞ¼H
1
2
þ 1

2
ffiffiffi
2
p

� 	
� Hð0:85Þ: ð13Þ

The total work that has to be invested for this process is therefore given by

W¼NkT ln 2 1�H
1
2
þ 1

2
ffiffiffi
2
p

� 	� 	
: ð14Þ

Closing the cycle. If we now perform the first and second process described above
one after another (that is, we perform a cycle, as depicted in Fig. 1), the total work
which can be extracted is given by

DW¼NkT ln 2 � SðrÞ�
X

i

piSðriÞ
 !

þ 1� 1
2

H zðf0 ;g0Þ
� �

� 1
2

H zðf1 ;g1Þ
� �� 	 !

:

ð15Þ

In general, we can see that when the uncertainty relation is violated, this quantity
can become positive and a positive DW corresponds to a violation of the second
law of thermodynamics.

Example: in our example, the above quantity corresponds to

DW¼NkT ln 2 H
1
2
þ 1

2
ffiffiffi
2
p

� 	
� 1

2
H zð0X ;0Z Þ
� �

� 1
2

H zð1X ;1Z Þ
� �� 	

: ð16Þ

The fine-grained uncertainty relations for quantum mechanics state that
zð0X ;0Z Þ; zð1X ;1Z Þ � 1

2 þ 1
2
ffiffi
2
p . When this value is reached with equality, then DW¼ 0

in the above calculation.
On the other hand, if these values were larger, that is, the uncertainty relation

could be violated, then the binary entropy of them would be smaller and DW
becomes positive.
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