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A universal test for gravitational decoherence
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Quantum mechanics and the theory of gravity are presently not compatible. A particular

question is whether gravity causes decoherence. Several models for gravitational

decoherence have been proposed, not all of which can be described quantum mechanically.

Since quantum mechanics may need to be modified, one may question the use of quantum

mechanics as a calculational tool to draw conclusions from the data of experiments

concerning gravity. Here we propose a general method to estimate gravitational decoherence

in an experiment that allows us to draw conclusions in any physical theory where the

no-signalling principle holds, even if quantum mechanics needs to be modified. As an

example, we propose a concrete experiment using optomechanics. Our work raises the

interesting question whether other properties of nature could similarly be established from

experimental observations alone—that is, without already having a rather well-formed theory

of nature to make sense of experimental data.
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E
xperiments1–4 aiming at testing the presence—and
amount—of gravitational decoherence generally go beyond
established theory. Many theoretical models for gravitational

decoherence have been proposed5–25, and it is wide open if one of
these proposals is correct. As such, experiments are of a highly
exploratory nature, aiming to establish data points that constrain
rival theoretical proposals. This task is made even more difficult by
the fact that quantum mechanics and gravity do not go hand in
hand, and indeed quantum mechanics may need to be modified in
a yet unknown way in order to account for gravitational effects
such as decoherence. We are thus compelled to design an
experiment that provides a guiding light for the search for the
right theoretical model—or indeed new physical theory—whose
conclusions do not rely on quantum mechanics.

Here we propose an experimental procedure to estimate
gravitational decoherence whose conclusions hold even if quantum
mechanics would need to be modified. We first establish a general
information-theoretic notion of decoherence which reduces to the
standard measure within quantum mechanics. Second, drawing on
ideas from quantum information, we propose a very general
experiment that allows us to obtain a quantitative estimate of
decoherence of any physical process for any physical theory
satisfying only very mild conditions. Our method is fully general
and could in principle be used to supplement many existing
experimental proposals in a way that would allow us to draw
conclusions from data even if quantum mechanics would need to
be modified. Concretely, if a process (supposedly) causing
gravitational decoherence can be probed experimentally, then
our general method allows us to measure a parameter b that
translates into an upper bound on decoherence,

Dec A Ejð Þ � h bð Þ ð1Þ
where Dec(A|E) is the amount of decoherence of a system A with
respect to its environment E (we will define this below). The
function h is plotted in the Discussion section for quantum
mechanics, but also very general physical theories. As an example,
we propose a concrete experiment using optomechanics to
estimate gravitational decoherence in any such theory, including
quantum mechanics as a special case. We note that our procedure
could be used to probe any form of decoherence, but only in the
case gravitational decoherence is there a pressing motivation for
considering theories beyond quantum mechanics.

Results
Decoherence in quantum mechanics. Before we turn to our
general approach (see Fig. 1), let us first focus on the concept of
decoherence within quantum mechanics as an easy warm-up.
This demonstrates some principles that we will generalize to a
broad framework of theories in the following section. Here we
first show how the protocol given in Fig. 2 allows us to estimate
quantum mechanical decoherence without knowing the deco-
herence process, and without doing quantum tomography to
determine it. Traditionally, the presence of decoherence within
quantum mechanics is related to the change of state due to
measurement and the ‘collapse of the wavefunction’. Decoherence
is thereby often seen as a decay of the off-diagonal terms in the
density operator r, corresponding to a (weak) measurement of
the state. It is clear that this way of thinking about decoherence is
entirely tied to the quantum mechanical matrix formalism,
and also offers little in the way of quantifying the amount of
decoherence in an operationally meaningful way.

The modern way of understanding decoherence in quantum
mechanics in a quantitative way is provided by quantum
information theory. One thereby thinks of a decoherence process
as an interaction of a system A0 with an environment as described
in Fig. 2, resulting in a quantum channel GA0-B. The amount of

decoherence can now be quantified by the channel’s ability to
transmit quantum information, that is, its quantum capacity
(see Supplementary Note 1 for further background). For a finite
number of channels, the relevant quantity is the single-shot
capacity as determined by the so-called min-entropy
Hmin(A|E)26,27.

Apart from its information-theoretic significance, the
min-entropy has a beautiful operational interpretation that also
makes its role as a decoherence measure intuitively apparent.
Very roughly, the amount of decoherence can be understood as a
measure of how correlated E becomes with A. Suppose we start
with a maximally entangled test state FAA0 where the decoherence
process is applied to A0. This results in a state CABEj i (see Fig. 2).
If no decoherence occurs, the output state will be of the
form FAB � 0j i 0h jE where A0 ¼B. That is, A and B are
maximally entangled, but A and E are completely uncorrelated.
The strongest decoherence, however, produces an output state of
the form FAE1 � rE2

� 0j i 0h jB where A0 ¼ E1 and where E is
subdivided into subsystems E¼ E1E2. That is, A is now maximally
entangled with E1, whereas A and B are completely uncorrelated.

What about the intermediary regime? The min-entropy can be
written as

Hmin A Ejð Þ¼� log dA Dec A Ejð Þð Þ ð2Þ
where dA is the dimension of A, and (ref. 28)

Dec A Ejð Þ¼ max
RE!A0

F2 FAA0 ; 1A � RE!A0 rAEð Þð Þ ð3Þ

and where F denotes the fidelity

F r; sð Þ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
p

s
ffiffiffi
r
pq� �

: ð4Þ

The maximization above is taken over all quantum operations
RE!A0 on the system E, which aim to bring the state rAE as close
as possible to the maximally entangled state FAA0 (see Fig. 3).
Intuitively, Dec(A|E) can thus be understood as a measure of how
far the output rAE is from the setting of maximum decoherence
(where rAE¼FAE is the maximally entangled state). If there is no
decoherence, we have rAE¼ 1/dA#rE giving Dec A Ejð Þ¼1=d2

A
and Hmin(A|E)¼ log dA. If there is maximum decoherence, we
have rAE1

¼FAA0 giving Dec(A|E)¼ 1 and Hmin(A|E)¼ � log dA

where RE!A0¼ TrE2 is simply the operation that discards the
remainder of the environment E2. A larger value of Dec(A|E) thus

Existing tests (rely on QM)

Gravitational
decoherence?

Universal test

�

Figure 1 | Illustration of our approach. Our method can in principle be

used in conjunction with any existing test for gravitational decoherence

such that we can draw conclusions from the experimental data even if

quantum mechanics would need to be modified. Intuitively, we combine a

test that probes gravitational decoherence with a Bell test. From the

estimated Bell violation b, we can draw quantitative conclusions about the

amount of decoherence in any physical theory in which the no-signalling

principle holds. The latter assumption could be relaxed further to theories

that allow a small amount of signalling, in the sense that the no-signalling

equation (10) is only satisfied approximately.
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corresponds to a larger amount of decoherence. In the quantum
case, Dec(A|E) can be computed using any semi-definite
programming solver29,30. We remark that Dec(A|E) does itself
not depend on the dimension of the system A. Furthermore,
we note that Dec(A|E) does not depend on the particular
physical realization of the system A, but merely the amount of
information that it can hold. We point out that this
entanglement-preservation picture is equivalent to the picture
in which the quantum state of a single system decoheres31

(see Fig. 4).
We hence see that in quantum mechanics, the relevant measure

of decoherence is simply Dec(A|E) (see Fig. 5 for some examples).
How can we estimate it in an experiment? Our goal in deriving
this estimate will be to rely on concepts that we can later extend

beyond the realm of quantum theory, deriving a universally valid
test. It is clear that to estimate Dec(A|E) we need to make a
statement about the entanglement between A and E—yet E is
inaccessible to our experiment. A property of quantum mechanics
known as the monogamy of entanglement32 nevertheless allows
such an estimate: if rAB is highly entangled, then rAE is
necessarily far from highly entangled. Since low entanglement
in rAE means that Dec(A|E) is low, a test that is able to detect
entanglement between A and B should help us bound Dec(A|E)
from above.

A′E

B

AA

A′

AAA

ΦAA′

Ein ΦAA′

Figure 3 | Intuitive picture of the decoherence quantity. After the

decoherence process, Eve (who controls the environment) performs an

operation RE!A0 in order to reach a state that is as entangled with system

A as possible. The decoherence quantity is a measure for how close Eve can

get to being maximally entangled with A, measured by the square of the

fidelity, F2.
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Figure 5 | Comparison of the quantum bound with the actual values of

Dec(A|E)q for some example channels and measurements. The black

dash-dotted line on top shows the quantum bound, that is, the maximal

value of Dec(A|E)r that is compatible with a measured CHSH value b in

quantum theory. The other four plots are parametric plots: The parameter

that is varied is the noise parameter of the channel (see Supplementary

Notes 2 and 5). For each noise parameter, the value of Dec(A|E)r of the

resulting state is calculated, as well as the CHSH value b that one would

measure for this state using the standard measurements in the X-Z-plane

that would be optimal for an EPR pair. This measurement happens to be

optimal for the resulting state for the depolarizing channel, but not for the

dephasing channels. The orange solid line also shows such a parametric

plot for the dephasing channel, but for that line, the CHSH value b is not

calculated for the standard measurement for the EPR pair but for the

measurement that is optimal for the actual resulting state50. The resulting

curve is independent of the dephasing direction.

E (Eve)

B (Bob)

Unknown
process

A (Alice)A

A′

E
⎢ΨE 〉    

⎢ΨABE 〉    

Figure 2 | Diagram of the general setup. A decoherence process—also

known as a (quantum) channel—can be thought of as an interaction UI of the

system A0 with an environment E. In quantum mechanics, the resulting state

is the output of the channel rB¼GA0!B rA0ð Þ¼ TrE ½UIrA0 � CEj i CEh jUw
I �. In

general, B (Bob) may be a smaller or larger system than A0 . In the examples

below, however, we will focus on the case where A0 and B have the same

dimension, corresponding to the case where a fixed system A0 ¼ B

experiences some interaction with another system E (Eve). The channel’s

(in)ability to preserve quantum information—and therefore the amount of

decoherence—can be characterized by how well it preserves entanglement

between an outside system A and A0. We note that our treatment of

theories that go beyond standard quantum mechanics makes no statement

whether the environment is an actual physical system, or merely a

mathematical Gedanken experiment possibly used to describe an intrinsic

decoherence process. In full generality, the experiment consists of a Bell

experiment in which a source of decoherence is introduced deliberately. For

simplicity, we consider an experiment for the CHSH inequality, although our

analysis could easily be extended to any other Bell inequality. In each run, a

source prepares the maximally entangled state FAA0, where A0 is

subsequently exposed to the decoherence process to be tested. We then

perform the standard CHSH measurements: system A is measured with

probability 1/2 using observables A0¼sX and A1¼sZ respectively. System

B is measured using observables B0¼ sX �sZð Þ=
ffiffiffi
2
p

and B1¼ sX þsZð Þ=
ffiffiffi
2
p

with probability 1/2 each. Performing the experiment many times allows an

estimate of b¼Tr[rAB(A0#B0þA0#B1þA1#B0�A1#B1)].

Preservation of
entanglement

Decoherence of
a single system

Figure 4 | Equivalence of entanglement preservation and single system

decoherence. It is known31 that decoherence on a single quantum system

can be understood fully as the process’ inability to preserve entanglement

(for further background information see Supplementary Note 1). It is for this

reason that our test for decoherence is fully general. In particular, it could

also be applied to collapse models or any other form of decoherence. We

emphasize gravitational decoherence, because here there is a pressing

motivation for considering theories that modify or extend quantum

mechanics.
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Beyond quantum mechanics. The real challenge is to show that
the conclusions of our test remain valid even outside of quantum
mechanics. Since we want to make as few assumptions as
possible, we consider the most general probabilistic theory, in
which we are only given a set of possible states O and
measurements on these states. Every measurement is thereby a
collection M¼ {ea}a of effects ea:O-[0, 1] satisfying ea oð Þ � 0
and

P
a ea oð Þ¼1 for all oAO. The label a corresponds to a

measurement outcome ‘a’. The notion of separated systems A, B
and E is in general difficult to define uniquely. We thus again
make the most minimal assumption possible in which we identify
‘systems’ A, B and E with sets of measurements that can be
performed. In a nutshell, we make the following assumptions:
there is a notion of states and measurements, we can observe
measurement outcomes that occur with some probability,
we identify subsystems by sets of possible measurements, and the
no-signalling principle holds (see Supplementary Notes 3 and 4
for details).

The first obstacle consists of defining a general notion of
decoherence. We saw that quantumly decoherence can be
quantified by how well correlations between A and A0 are
preserved, and this can be measured by how well the decoherence
process preserves the maximally correlated (that is, entangled)
state. Indeed, we can also quantify classical noise in terms of how
well it preserves correlations, where the maximally correlated
state takes on the form 1=dAð Þ

P
a aj i ah jA� aj i ah jA0 for some

classical symbols a. We hence start by defining the set of
maximally correlated states, by observing a crucial and indeed
defining property of the maximally correlated state in quantum
mechanics. Concretely, A and A0 are maximally entangled if and
only if for any von Neumann measurement on A, there exists a
corresponding measurement on A0 giving the same outcome.
Again, the same is also true classically but made trivial by the fact
that there is only one measurement. In analogy, we thus define
the set of maximally correlated states as

CAA0¼ F 2 OAA0 8MA¼ eA
a

� �
a9MB¼ eB

a

� �
a

��n
such that

X
a

eA
a eB

a Fð Þ¼1

)

ð5Þ
This set coincides with the set of maximally entangled states in
quantum mechanics, where A0 can potentially contain an
additional component sA02

in FAA01
� sA02

which is irrelevant to
our discussion. We thus define

Dec A Ejð Þo¼ sup
RE!A0

sup
FAA0 2CAA0

F2 FAA0 ;RE!A0 oAEð Þð Þ ð6Þ

where oAE is the state shared between A and E according to the
general physical theory. The fidelity between two states o1 and o2

is thereby defined in full analogy to the quantum case33 as

F o1;o2ð Þ¼ inf
M

F M o1ð Þ;M o2ð Þð Þ ð7Þ

where the minimization is taken over all possible measurements
M, and M(o) denotes the probability distribution over the
measurement outcomes of M. Here, the fidelity F(M(o1), M(o2))
can be written as33

F M o1ð Þ;M o2ð Þð Þ¼
X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ei o1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
ei o2ð Þ

p
ð8Þ

where the sum ranges over all effects ei of the measurement M
(see Supplementary Note 3 for further details). That is, the
fidelity can be expressed as the minimum fidelity between
probability distributions of classical measurement outcomes. We
will not need to make RE0 explicit in order to bound Dec(A|E).
Equation (6) gives us the familiar quantity within quantum
mechanics, but provides us with a very intuitive way to

quantify decoherence in any physical theory that admits
maximally correlated states. We emphasize that with our
general techniques the latter demand could be weakened to
allow all theories, even those which only have (weak)
approximations of maximally correlated states.

The second challenge is to prove that our test actually provides
a bound on Dec(A|E)o. Note that without quantum mechanics to
guide us, all that we could reasonably establish by performing
measurements on A and B are the probabilities of outcomes a and
b given measurement settings x and y. That is, the probability

Pr a; b x; yj½ �o¼eA
a eB

b oABð Þ ð9Þ
where eA

a 2 MA
x and eB

b 2 MB
y . Yet, given the system E is entirely

inaccessible to us we have no hope of measuring Pr[a, b, c|x, y, z]o
directly, where z denotes a measurement setting on E with
outcome c. Nevertheless, similar to quantum entanglement,
it is known that non-signalling distributions are again
monogamous34—and it is this fact that allows us to draw
conclusions about E by measuring only A and B. We will
therefore make a non-trivial assumption about the physical theory,
namely that no-signalling holds between A, B and E. We
emphasize that weaker constraints on the amount of signalling
could also lead to a bound—but we are not aware of any other
concrete example to consider. Mathematically, no-signalling means
that the marginal distributions obey

8a; x; y; y0; z; z0 : Pr a x; y; zj½ �o¼ Pr a jx; y0; z0½ �o ð10Þ
that is, the choice of measurement settings y, y0 and z, z0 does not
influence the probability distribution over the outcomes a. A set of
distributions is non-signalling if such conditions hold for all
marginal distributions.

Discussion
What have we actually learned when performing such an
experiment? We first observe that the measured b always gives
an upper bound on the amount of decoherence observed—for any
non-signalling theory. This means that even if quantum mechanics
would indeed need to be modified we can still draw conclusions
from the data we obtain. As such, the observations made in such
an experiment establish a fundamental limit on decoherence no
matter what the theory might actually look like in detail. It is clear,
however, that the bound thus obtained is much weaker than if we
had assumed quantum mechanics. No-signalling is but one of
many principles obeyed by quantum mechanics, and these other
features put stronger bounds on the values that Dec(A|E) can take.
Our motivation for considering theories which are only
constrained by no-signalling is to demonstrate even such weak
demands still allow us to draw meaningful conclusions from such
an experiment. One can easily adapt our approach by introducing
further constraints on the probabilities Pr[a, b, c|x, y, z]—but not
all of quantum mechanics—in order to get stronger bounds. Also
in a fully quantum mechanical world, our approach yields a bound
(see Fig. 6). If we assume quantum mechanics, we may of course
also try and perform process tomography in order to determine the
decoherence process, and indeed any experiment should try and
perform such a tomographic analysis whenever possible. The
appeal of our approach is rather that we can draw conclusions
from the experimental data while making only very minimal
assumptions about the underlying physical theory.

One may wonder why we only upper bound Dec(A|E). Note
that from our experimental statistics we can only make statements
about the overall decoherence observed in the experiment, namely
the gravitational decoherence (if it exists) as well as any other
decoherence introduced due to experimental imperfections.
Finding that the Bell violation is low (and thus maybe Dec(A|E)
might be large) can thus not be attributed conclusively to the
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gravitational decoherence process, making a lower bound on
Dec(A|E) meaningless if our desire is to make statements about a
particular decoherence process such as gravity.

Second, we observe that our approach can rule out models of
gravitational decoherence but not verify a particular one. It is
important to note that a model for gravitational decoherence does
not stand on its own, but is always part of a theory on what states,
evolutions and measurements behave like. Given such a physical
theory and a model for gravitational decoherence, we know
enough to compute Dec(A|E), such as for example in equations
(15–17). In addition, we can compute an upper bound ftheory(b)
on Dec(A|E) specific to that theory, which may give a much
stronger bound than no-signalling alone. Indeed, we see from
Fig. 6 that this is the case for quantum mechanics. Given the
calculated Dec(A|E) and the experimentally observed value for
ftheory(b), we can then compare: If Dec(A|E)4ftheory(b), then the
model (or indeed theory) we assumed must be wrong. However, if
Dec A Ejð Þ � ftheory bð Þ, then we know that the model and theory
would be consistent without experimental observations.

Note that while our framework allows for theories with
super-quantum correlations (that is, with b42

ffiffiffi
2
p

(ref. 35)), it is

also perfectly valid in the regime where b � 2
ffiffiffi
2
p

. The bound
shown in Fig. 6 is non-trivial for all b42, and therefore
conclusions can be drawn for all such b. Hence, the various
arguments brought forward in the literature for why super-
quantum correlations should not be observed36–42 do not
contradict our work. The numeric value of the red bound in
Fig. 6 may seem weak. However, recall from above that this is a
bound for the most general class of theories that can be
considered in our framework, while additional assumptions
about the theory in question increase the strength of the bound.

Our approach thus provides a guiding light in the search for
gravitational decoherence models. It is very general, and could
in principle be used in conjunction with other proposed
experimental setups and decoherence models. In particular, it
could also be used to probe decoherence models conjectured to
arise from decoherence affecting macroscopic objects, where
there exist proposals to bring such objects into superposition3.
Clearly, however, probing such models using entanglement is
extremely challenging.

E(t) a†

E(t)

g
e

Raman single photon source

E(t)

b, b†

Figure 7 | Probing an optomechanical system. Our goal is to create

entanglement between two optomechanical cavities. One cavity thereby

has a movable mirror that introduces gravitational decoherence. Two

cavities each contain a Raman single photon source controlled by an

external laser ‘write field’ E(t)55. This write-field is used to map excitations

in the atomic sources to single photon excitations in the cavities. The top

cavity has fixed end mirrors while the bottom cavity has one mirror that is

harmonically bound along the cavity axis and can move in response to the

radiation pressure force of light in the cavity. The Raman sources are first

prepared in an entangled state. This setup is a modification of the one

proposed by Bouwmeester2 in which an itinerant single photon pulse is

injected into a cavity rather than created intra-cavity as here. Our

modification avoids the problem that the time over which the photons

interact with the mechanical element is stochastic and determined by the

random times at which the photons enter and exit the cavity through an end

mirror. In the new scheme, the cavities are assumed to have almost perfect

mirrors—very narrow line width56 (see Supplementary Note 6 for details).
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Figure 6 | Allowed values of the decoherence quantity for measured

CHSH values. (a) shows what values of the decoherence quantity are

compatible with some measured CHSH value b, assuming either quantum

theory or any other probabilistic theory. The dark green region consists of

all points (b, Dec(A|E)r) for which there exists a quantum state rAB and two

pairs (A0, A1) and (B0, B1) of observables with the according values, that is,

the bound is tight. The red region shows pairs (b, Dec(A|E)o) that cannot

be realized in any non-signalling probabilistic theory. The curve between the

light green area and the red area is a bound on Dec(A|E)o which is valid for

all non-signalling generalized probabilistic theories (GPTs). (b) shows a

zoomed-in plot of the border line between the forbidden region and the

region which is potentially allowed by GPTs. In a world constrained only by

no-signalling, b¼4 is possible51–54.
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It is a very interesting open question to improve our analysis
and to apply it to other physical theories that are more
constrained than by no-signalling, but yet do not quite yield
quantum mechanics. Candidates for this may come from the
study of generalized probabilistic theories where the authors
(e.g., refs 43–48) introduced further constraints in order to
recover quantum mechanics, but also from suggested ways to
modify the Schrödinger equation in order to account for
non-quantum mechanical noise. Since our approach could
also be applied to higher dimensional systems, and other
Bell inequalities, it is a very interesting open question
whether other Bell inequalities could be used to obtain
stronger bounds on Dec(A|E) from the resulting experimental
observations.

Methods
In quantum mechanics. Figure 2 illustrates the general experimental procedure.
As an easy warm-up, let us first again consider what happens in quantum
mechanics. For now, we assume that the measurement devices have no
memory. That is, the experiment behaves the same in each round, independent on
the previous measurements. It is relatively straightforward to obtain an upper
bound on Dec(A|E) by extending techniques from quantum key distribution49.
In essence, we maximize Dec(A|E) over all states that are consistent with
the observed CHSH correlator b (see Fig. 2). This maximization problem is
simplified by the inherent symmetries of the CHSH inequality, allowing us to
reduce this optimization problem to consider only states that are diagonal in the
Bell basis. We proceed to establish properties of min and max entropies for Bell
diagonal states, leading to an upper bound. Concretely, we show in Supplementary
Note 2 that

Dec A Ejð Þ � h bð Þ ð11Þ

where h(b) is an easy optimization problem that can be solved using Lagrange
multipliers. We have chosen not to weaken this bound by an analytical bound that is
strictly larger, as it is indeed easily evaluated (see Fig. 6). If the devices are allowed
memory, then a variant of this test and some more sophisticated techniques from
quantum key distribution can nevertheless be shown to give a bound.

Beyond quantum mechanics. Let us first give a very loose intuition why
performing a Bell experiment on A and B may allow us to bound Dec(A|E)o. It is
well known34 that non-signalling correlations are also monogamous. That is, if we
observe a violation of the CHSH inequality as captured by the measured parameter
b, then we know that the violation between A and E and also between E and B must
be low. Note that the expectation values Tr[rAB(Ax#By)] in terms of quantum

observables Ax and By can be expressed in terms of probabilities as

Tr rAB Ax � By
� 	
 �

¼
X

a2 � 1f g
Pr a; a x; yj½ �o � Pr a; � a x; yj½ �o ð12Þ

where we have again used oAB in place of rAB to remind ourselves that we may be
outside of QM. Let us now assume by contradiction that the state oAE shared
between A and E would be close to maximally correlated. Then by definition of the
maximally correlated state, for every measurement on A, there exists some
measurement on E which yields the same outcome with high probability. Hence, if
oAE would be close to maximally correlated, then we would expect that E and B can
achieve a similar CHSH violation as A and B—because E can make measurements
that reproduce the same correlations that A can achieve with B. Yet, we know that
this cannot be since CHSH correlations are monogamous. Note that a mapR (as in
Fig. 3), followed by a measurement in fact constitutes another measurement.
Hence, considering all possible measurements that Eve can perform, we cover all
such possible maps R that Eve might want to apply.

While we do not follow the exact steps suggested by this intuition, we employ a
technique in Supplementary Note 3 that has also been used for studying
monogamy of CHSH correlations34. Specifically, we use linear programming as a
technique to obtain bounds. We thereby first relate the fidelity to the statistical
distance, which is a linear functional. We are then able to optimize this linear
functional over probability distributions Pr[a, b, c|x, y, z]o satisfying linear
constraints. The first such constraint is given by the fact that we consider only
non-signalling distributions. The second is the fact that the marginal distribution
Pr[a, b|x, y]o leads to the observed Bell violation b. The last one stems from the fact
that maximal correlations can also be expressed using a linear constraint. Solving
this linear program for an observed violation b leads to Fig. 6.

Optomechanical experiment. To gain insights into the significance of gravita-
tional decoherence, we examine Diosi’s theory of gravitational decoherence6 as an
example. This is equivalent to the decoherence model introduced in Kafri et al.10.
We show in Supplementary Note 6 how Dec(A|E) can be evaluated for many other
decoherence processes, opening the door for applying our method to many other
possible experiments. Diosi’s model can be applied to an optomechanical cavity in
which one mirror is free to move in a harmonic potential with frequency om as in
Fig. 7. The master equation for a massive particle moving in a harmonic potential,
including gravitational decoherence is

dr
dt
¼� iom byb; r

h i
�L bþ by; bþ by; r

h ih i
ð13Þ

where

b¼
ffiffiffiffiffiffiffiffiffiffiffi
mom

2‘

r
x̂þ i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘mom
p p̂ ð14Þ

with x̂; p̂ the usual canonical position and momentum operators for the moving
mirror. We have that

L¼Lgrav þLheat ð15Þ
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Gravitational decoherence included, density Δ = 2,7 × 103 kg m−3 (aluminum)

Gravitational decoherence neglected (material-independent mechanical heating only)

Figure 8 | Predicted values of the decoherence quantity in the optomechanical experiment. This figure shows the predicted values of Dec(A|E)r as a

function of the running time of the optomechanical experiment for different temperatures and for different materials of the mechanical element as

calculated in the proposed model for gravitational decoherence. In addition, Dec(A|E)r is plotted for the case where gravitational decoherence is not taken

into account. When the gap between the predicted values with and without gravitational decoherence is large enough, the decoherence estimation

formalism allows for a test that potentially falsifies the proposed model for gravitational decoherence. The calculations have been made for the example

experimental parameters g0¼ 1 s� 1, om¼ 1 s� 1 and gm¼ 10� 10 s� 1.
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where the gravitational decoherence rate Lgrav is given by

Lgrav¼
2p
3

GD
om

ð16Þ

with G the Newton gravitational constant and D the density of the moving mirror.
As one might expect Lgrav is quite small, of the order of 10� 8 s� 1 for suspended
mirrors with omB1. The term

Lheat¼
kBT
‘Q

ð17Þ

with Q¼o/gm corresponds to mechanical heating. To see the effect of the
gravitational term stand out next to the mechanical heating we thus need to make
the temperature T low. A calculation shows that this model leads to a dephasing
channel G(r)¼ prþ (1� p)ZrZw where p is a function of the density D, and the
other parameters. In Supplementary Note 6, we show that for this model

Dec A Ejð Þr¼
1
4

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 4 1þ 2

4pG
3

1
gmom

Dþ 2kB

‘
1
om

T

� � 
g2

0

o2
m

sin2 omt
2

� �� s !

ð18Þ
where G is the Newton gravitational constant, kB is the Boltzmann constant, and :
the Planck constant (see Fig. 8 for the other parameters).

Code availability. The source code of the semidefinite program and the linear
program used to derive the plots in Fig. 6 are available from the authors on request.

Data availability. Data sharing not applicable to this article as no data sets were
generated or analysed during the current study.
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