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A fully general strong converse for channel coding states that when the rate of sending classical

information exceeds the capacity of a quantum channel, the probability of correctly decoding goes to zero

exponentially in the number of channel uses, even when we allow code states which are entangled across

several uses of the channel. Such a statement was previously only known for classical channels and the

quantum identity channel. By relating the problem to the additivity of minimum output entropies, we show

that a strong converse holds for a large class of channels, including all unital qubit channels, the

d-dimensional depolarizing channel and the Werner-Holevo channel. This further justifies the interpre-

tation of the classical capacity as a sharp threshold for information transmission.
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A fundamental problem in quantum information theory
is the transmission of classical information over (noisy)
quantum channels. As a simple example, suppose we send
M classical bits using a qubit identity channel n times.
Clearly [1], this can be done reliably if M � n, but if the
number of classical bits exceeds the number of qubits sent
(M> n) we are no longer able to recover the encoded
information with perfect accuracy [2]. This situation is
analogous to the problem of information transmission
over a noisy classical channel. Here, there exists a constant
C, called the classical capacity, which determines the
maximal number of classical bits that can be sent reliably
per channel use: by using the channel n times, we can
reliably transmit M bits if and only if the rate R ¼ M

n

satisfies R � C in the asymptotic limit. This is known as
the coding theorem due to Shannon [4]. For example, for
the binary bit flip channel, which flips an input bit with
probability p, this constant is given by C ¼ 1� hðpÞ,
where h is the binary entropy function. The unifying con-
cept for both scenarios is that of the classical capacity C.
For the qubit identity channel Holevo’s seminal result [3]
shows that the classical capacity is equal to 1.

In fact, for both the qubit identity channel and any
classical channel, the classical capacity C imposes a sharp
bound on our ability to recover classical information sent
over the channel: On the one hand if R � C, then it is
possible to send nR classical bits by using the channel n
times in such a way that the probability Psucc of successful
decoding goes to 1 exponentially as n ! 1. This is also
referred to as the achievability of the capacity. On the other
hand, if R> C, then for any encoding and decoding
scheme, Psucc is exponentially small in the difference
nðR� CÞ. This is referred to as the strong converse of
the coding theorem for these channels.

For classical noisy channels, the strong converse was
established by Wolfowitz [5]. For the qubit identity chan-
nel id2 � idBðC2Þ, the argument is rather simple: Suppose

we encode a uniformly distributed nR-bit string X 2

f0; 1gnR using a family of 2nR states f�xg2nRx¼1 on ðC2Þ�n
(i.e., of n qubits). Then, for any decoding positive operator

valued measure (POVM) fExg2nRx¼1 on ðC2Þ�n, the average
success probability of correctly decoding is bounded by

Pid2
succðn; RÞ ¼ 1

2nR
X
x

trðEx�xÞ � 1

2nR
X
x

trðExÞ ¼ 2�nðR�1Þ:

Here, we used the operator inequality �x � IðC2Þ�n for every
x, and the fact that the operator elements of a POVM sum
to the identity. Because of the strong converse property, we
can regard the capacity C as an exact measure of the
information-carrying power of any classical channel and
the quantum identity channel.
Unfortunately, this appealing operational interpretation

of the classical capacity C is not quite as complete for
general quantum channels. While the achievability of the
capacity has been established in [6,7] (building on [8]),
only a weak converse has been shown without assumptions
[3]. It merely states that for rates R> C above the capacity,
the success probability is bounded away from 1. This is in
contrast to a strong converse, which shows that this proba-
bility goes to zero exponentially, in the limit as n goes to
infinity.
Here, we are interested in the validity of the strong

converse property for a general quantum channel.
Establishing such a converse is more difficult than for
classical channels for the same reason it is difficult to
compute the classical capacity of a quantum channel: We
have to take into account the possibility that entanglement
over several uses of the channel may help to increase the
probability of successful decoding. Indeed, a recent break-
through result by Hastings [9] shows that using entangled
states can be advantageous. Formally, this is expressed by

the product-state capacity Cprod
� : This is defined in the same

way as the capacity, but with the restriction that the input
states to the channel��n have to be of tensor product form.
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Hasting’s result shows that there are channels � with

C
prod
� <C�.

In light of the advantage of entanglement for coding, it is
natural to ask whether entanglement may invalidate the
strong converse property: In particular, we study whether
allowing arbitrary (entangled) input states affects the ex-
ponential decay of the success probability. Previous studies
of the region R> C� were restricted to the case where the
inputs are not entangled across different uses of the chan-
nel [10,11], and are thus conceptually similar to the study

of the achievability of the product-state capacity Cprod
�

instead of the more general C�.
Main result.—In this Letter, we prove a strong converse

for a large number of quantum channels �. In particular,
our result applies to (i) the qudit depolarizing channel

�rð�Þ ¼ r�þ ð1� rÞ I
d
; (1)

replacing any input state with the fully mixed state with
probability (1� r) for �1=ðd2 � 1Þ � r � 1, (ii) any uni-
tal qubit channel [12], and, more generally, (iii) any chan-
nel which has additive minimum output � entropy Smin

� for
� � 1 (close to 1) as defined below [13], and the following
covariance property: there is a pair of unitary representa-
tions of some group G on the input space H in and the
output space H out, respectively, such that

g�ð�Þgy ¼ �ðg�gyÞ for all g 2 G;

where the representation on H out is irreducible. An ex-
ample of such a channel is the Werner-Holevo channel
[14].

More formally, we are concerned with (noisy) quantum
channels, i.e., completely positive trace-preserving maps
(CPTPM) �: BðH inÞ ! BðH outÞ. Throughout, we re-
strict our attention to finite-dimensional Hilbert spaces
H in andH out. A code of rate R for� specifies (for every

n) a family f�xg2nRx¼1 of states on H �n
in , where �x is the

quantum code word associated with the classical message
x 2 f1; . . . ; 2nRg. A corresponding decoder is a POVM

fExg2nRx¼1 on H �n
out. We are interested in the average success

probability of decoding correctly, that is, the quantity

P�
succðn; RÞ ¼ 1

2nR
X2nR
x¼1

trðEx�
�nð�xÞÞ: (2)

In this terminology, we show the following:
Theorem.—Let � be a CPTPM described by (i)–(iii),

and let C� be its classical capacity. There exists a constant
� > 0 such that the following holds: For any code of rate R,
and any corresponding decoder, the success probability

P�
succðn; RÞ is upper bounded by 2���nðR�C�Þ (for suffi-

ciently large n).
Thus the success probability decays exponentially when

coding at rates above the capacity.

Background.—Before giving a short overview of our
proof, let us briefly recall how the study of the achievability
of rates below the capacity can be subdivided into three
major components: one begins by setting up a connection
between the operational problem of coding and an entropic
quantity. More precisely, one can show that there exists
codes such that the success probability has a behavior of
the form

P�
succðn; RÞ ¼ 1� e�n�ð ���ð�Þ�RÞ; (3)

with � > 0 for rates R smaller than

�� �ð�Þ :¼ lim
n!1

1

n
��ð��nÞ: (4)

This quantity is the regularized version of the Holevo
quantity of the channel �, i.e.,

��ð�Þ :¼ max
fpx;�xgx

�ðfpx;�ð�xÞgxÞ; (5)

which in turn is defined in terms of the Holevo quantity of
an ensemble fpx; �xgx, given by

�ðfpx; �xgxÞ :¼ S

�X
x

px�x

�
�X

x

pxSð�xÞ: (6)

This is the first step in the study of the coding problem. It
reduces the operational problem of coding to the study of
the quantity (4). In particular, (3) tells us that we can code
with exponentially small error at any rate R< ���ð�Þ.
The second component is to study general properties of

the quantity ���ð�Þ. The computation of this value is dras-
tically simplified in cases where the Holevo quantity is
additive, that is,

��ð��n�1 ��Þ ¼ ��ð��n�1Þ þ ��ð�Þ (7)

for all n > 1, since this implies ���ð�Þ ¼ ��ð�Þ. Note that
part of this statement, the so-called subadditivity

��ð��n�1 ��Þ � ��ð��n�1Þ þ ��ð�Þ;
is trivial, as it corresponds to restricting to product states.
Showing whether or not (7) holds for a given channel � is
called an additivity problem. It has several equivalent
formulations: for example, the quantity ��ð�Þ, for any
CPTPM �, can be re-expressed in terms of the relative
entropy D as

��ð�Þ ¼ min
�

max
�

Dð�ð�Þ k �ð�ÞÞ (8)

as shown in [15]. The physical significance of the additiv-
ity property (7) stems from the fact that (4) is a formula for
the capacity C�, while (5) is equal to the product-state

capacity Cprod
� [16]. Additivity of �� for a channel �

therefore implies that there is no advantage in using en-
tangled states for coding in the asymptotic limit.
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Finally, one needs to investigate the additivity prob-
lem [cf. (7)], which is poorly understood in general.
King [17] has shown additivity of �� for the depolarizing
channel (1). His proof uses the fact that for any covariant
channel �, the Holevo quantity is related to the minimum
output entropy [18]

Sminð�Þ :¼ min
�

Sð�ð�ÞÞ (9)

by

��ð�Þ ¼ logdout � Sminð�Þ; (10)

where dout is the dimension of the output spaceH out. King
then establishes the additivity of Smin for the depolarizing
channel �r by showing that the related minimum �-Rényi
entropies Smin

� (defined below) are additive for �r. This
implies additivity of ��, and leads to an explicit formula
for the capacity C�r

.

Proof outline.—Our approach to coding at rates above
the capacity has the same overall structure as the study of
the achievability explained above. The strong converse
theorem is obtained by (a) relating the decoding probabil-
ity to entropic quantities, (b) rephrasing the resulting ad-
ditivity problems and finally (c) showing that the channels
(i)–(iii) satisfy these additivity properties.

The relevant quantities in our case turn out to be the
following Rényi-entropic versions of the above quantities.
For � � 1, we use [19]

S�ð�Þ :¼ 1

1� �
log trð��Þ

D�ð� k �Þ :¼ 1

�� 1
log trð���1��Þ

��ðfpx; �xgxÞ :¼ �

�� 1
log tr

�X
x

px�
�
x

�
1=�

:

(11)

We also need the corresponding derived quantities ��
�ð�Þ,

���
�ð�Þ, and Smin

� ð�Þ defined as in (5), (4), and (9),
respectively.

We now give a sketch of the proof, following the three
steps (a)–(c) outlined above (details can be found in [20]).
First, we relate our operational problem to the regularized
quantity ���

�ð�Þ by showing that for any code of rate R, we
have

P�
succðn; RÞ & 2�n½1�ð1=�Þ�ðR� ���

�ð�ÞÞ for all � � 1 (12)

for sufficiently large n. The proof employs techniques used
by Ogawa and Nagaoka [10]. This is the analog of (3). It
shows that for any rate R> ���

�ð�Þ, the success probability
decays exponentially with n.

Clearly, the quantity ���
�ð�Þ again has a particularly

simple form if ��
� is additive as in (7). To study additivity

of the quantity ��
�, the second step of our proof is to derive

the following analog of (8), essentially following the steps
of Schumacher and Westmoreland [15]

min
�out

max
�

D�ð�ð�Þ k �outÞ � ��
�ð�Þ

� min
�in

max
�

D�ð�ð�Þ k �ð�inÞÞ:
(13)

As before, additivity of the quantity ��
� is intimately con-

nected to the classical capacity C�: As shown in [10], for
every " > 0, we have ��

�ð�Þ<C� þ " for all � � 1 in
some neighborhood of 1. In particular, with (12), this
shows that additivity of ��

� for all � in the vicinity of 1
implies a strong converse, that is, an exponential decay of
the success probability for any rates R> C�. Since it is
known [10,11] that coding with product states at rates
above the capacity leads to the same exponential behavior,
we can conclude that entanglement provides no operational
advantage.
Finally, we show additivity of ��

� for the special class of
channels � satisfying our assumptions (i)–(iii). For these
channels, the covariance properties imply that both the
lower and upper bound in (13) coincide and are attained
when �in and �out are completely mixed. By definition,
this means that these channels satisfy the Rényi-entropic
version

��
�ð�Þ ¼ logdout � Smin

� ð�Þ (14)

of (10). Additivity of ��
� is shown by combining (13) with

(14), as follows. For �in ¼ I=d equal to the fully mixed
state, we get

��
�ð��nÞ � max

�
D�½��nð�Þ k ��nððI=dinÞ�nÞ�

¼ logdnout � Smin
� ð��nÞ ¼ n logdout � nSmin

� ð�Þ:
(15)

In the last step, we used the additivity of the minimum
output �-entropy Smin

� for the channels of interest for � �
1 close to 1 (cf. [21] for qubit unital channels, [17] for the
depolarizing channel, and [22–24] for the Werner-Holevo
channel). By the subadditivity property of the quantity ��

�,
we know that n��

�ð�Þ � ��
�ð��nÞ. Combining this with

(14) and (15) proves additivity, that is, ���
�ð�Þ ¼ ��

�ð�Þ ¼
logdout � Sminð�Þ. This concludes the proof of our main
result.
Conclusions.—In summary, we have shown that for a

large class of practically relevant quantum channels, the
probability of reliably transmitting nR classical bits by n
uses of the channel has an asymptotic behavior of the form

2��nðR�CÞ for some constant � > 0 when coding at rates R
above the classical capacity C. Such a statement was
previously only known for classical channels and the iden-
tity channel. Our result has direct practical applications to
quantum cryptography, especially in the so-called noisy-
quantum-storage model [25,26], where the adversary is
restricted to using low-capacity channels. For these appli-
cations, some knowledge about the optimal constant � will
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be useful. Our work provides bounds on this value, about
which little is known even in the classical case.

On a more fundamental level, our result implies that for
the quantum channels considered, using entanglement pro-
vides no advantage in all rate regimes. These channels
therefore behave just as classical channels with respect to
the transmission of classical information. Establishing
strong converses for a wider class of channels is of funda-
mental importance, as this is the natural counterpart of the
achievability statement of the capacity. Of particular inter-
est in this context are channels whose Holevo quantity is
nonadditive [9]. While we do not explicitly use this fact,
the Holevo quantity is additive for the channels considered
in this Letter.

Showing that the success probability of decoding has an
exponential behavior both below and above the capacity
confirms our interpretation of the classical capacity as the
single relevant measure of the usefulness of a quantum
channel for classical communication.
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