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susceptible to hosting interesting topological 
effects (see the Commentary by Kraus 
and Zilberberg24).

Once again, the underlying root of 
all these phenomena is the nontrivial 
topology of the bands in the energy 
spectrum. By the same mechanism 
topological phases of matter can also arise 
in pure classical systems. For instance, 
2D families of coupled gyroscopes and 
pendula can display nontrivial topological 
band structures (see the Commentary 
by Huber25).

There are many other phases of matter in 
which different topological characteristics 
play a fundamental role, such as Dirac, 
Weyl and nodal line semimetals, topological 
crystalline insulators and topological fluids. 
The subject is in full effervescence.

It is also worth noting that in gauge 
theories, the topology of the bundle in 
which the gauge fields are defined is not the 
only topological factor that is relevant for 
physical effects; the topological structure 
of the actual space of gauge fields also plays 
a role in physical phenomena like gauge 
anomalies26,27. It is therefore possible that it 

could also play a relevant role in the analysis 
of new topological phases of matter.

In the dawn of the topological matter 
revolution, one of the major challenges 
of pure topology — the famous Poincaré 
conjecture — has finally been proved28–30: 
any 3D topological space X with π1(X) = 0 
is topologically equivalent to the S3 sphere. 
Recalling Gamow’s remark about the 
unforeseeable applications of topology, there 
is no doubt that, in one way or another, 
this result will turn out to be helpful in 
understanding the riddles of nature.� ❐
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A road to reality with 
topological superconductors
Carlo Beenakker and Leo Kouwenhoven

Topological matter can host low-energy quasiparticles, which, in a superconductor, are Majorana 
fermions described by a real wavefunction. The absence of complex phases provides protection for 
quantum computations based on topological superconductivity.

Quantum mechanics is complex. The 
only way Erwin Schrödinger could 
get his equation iħdψ/dt = Hψ to 

work was to multiply the time derivative 
of the wavefunction ψ by the imaginary 
unit i. He complained about that in a 1926 
letter to Lorentz (as quoted in ref. 1): “What 
is unpleasant here, and indeed directly 
to be objected to, is the use of complex 
numbers — ψ is surely fundamentally a 
real function.” But the i was there to stay. 
Freeman Dyson called this apparently 
illogical step “one of the most profound 
jokes of nature”2: “Schrödinger put the 
square root of minus one into the equation, 
and suddenly it made sense. Suddenly it 
became a wave equation instead of a heat 
conduction equation … and that square 
root of minus one means that nature 

works with complex numbers and not with 
real numbers.”

Topological superconductivity provides a 
road to reality; topological superconductors 
and topological insulators both combine a 
gapped bulk with gapless surface excitations, 
which are governed by a relativistic wave 
equation. But while the wavefunction ψ 
is complex in an insulator, ψ is real in a 
topological superconductor. A real ψ means 
that scattering phase shifts are limited to 
±1, which profoundly changes the way 
quantum interference operates and promises 
a robustness of phase coherence that a 
complex ψ lacks.

Bogoliubov meets Majorana
The mathematics that allows for a real 
wavefunction is simple. If an electron at 

energy E has a time-dependent ψ  e–iEt/ħ, 
then its antiparticle (a ‘hole’) has ψ  e+iEt/ħ 

and a linear superposition would give a real 
ψ . In a physical system, this superposition 
is produced by transitions between states 
of charge +e and −e that are normally 
forbidden by charge conservation. This 
is where the superconductor enters, by 
providing a reservoir of Cooper pairs of 
charge 2e that absorbs the charge difference. 
The electron–hole superposition, a so-
called Bogoliubov quasiparticle3, has a 
Hamiltonian H = iA that turns out to be 
purely imaginary. The i then cancels with the 
i in front of dψ/dt to produce a purely real 
wave equation, ħdψ/dt = Aϕ. 

This applies to any superconductor, but in 
a typical situation the physical consequences 
of a real ψ remain hidden because of a 
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conspiracy of symmetries: particle–hole 
symmetry together with spin–rotation 
symmetry pairs up the Bogoliubov 
quasiparticles, so that they are effectively 
represented by a complex wavefunction — in 
much the same way that a complex number 
is represented by its real and imaginary 
parts. Although particle–hole symmetry 
is unavoidable in a superconductor, 
spin–rotation symmetry can be broken, 
allowing for an unpaired Bogoliubov 
quasiparticle with a manifestly real ψ. The 
theoretical physicists who studied this 
scenario at the turn of the century called 
it a Majorana fermion4–7, in reference to 
a hypothetical elementary particle from 
the early days of quantum physics8. The 
theoretical models that produced Majorana 
fermions had an exotic superconducting 
order, with spin-triplet Cooper pairs in 
a chiral p-wave orbital state9 — chirality 
refers to the px ± ipy structure of the order 
parameter. These were among the first 
appearances on paper of topological 
superconductors, but it would take another 
decade for a breakthrough in our thinking 
how they might be realized in the laboratory.

Routes to topological superconductivity
There may well be materials that develop 
topological superconductivity on their 
own — strontium ruthenate is one 
longstanding candidate for spin-triplet 
pairing10. Spin-singlet pairing, however, 
is overwhelmingly more common. 
The breakthrough that has opened up 
a great variety of routes to topological 
superconductivity is the realization that one 
can start from a conventional spin-singlet 
superconductor and use the proximity 
effect to induce a topologically non-trivial 
superconducting state in a material with 
strong spin–orbit coupling11–14.

The reasoning behind such hybrid 
approaches is that the mechanism that 
produces a topologically non-trivial 
state is the same for insulators and 
superconductors: an inversion of the 
excitation gap in the bulk that leaves behind 
a gapless surface state. Quite generally, a 
gap closing followed by a reopening will 
invert the sign of the gap and transform 
a topologically trivial state into a non-
trivial state. So to create a topological 
superconductor we need two competing 
actors: a bad actor that seeks to kill the 
induced superconductivity, and a good actor 
that tries to revive it.

In several early implementations15–18, 
an indium antimonide or indium arsenide 
nanowire is covered by a niobium or 
aluminium superconductor. The proximity 
effect pairs electrons of opposite spin in the 
nanowire, producing a superconducting 

gap at the Fermi level. A magnetic field 
tends to align the electron spins and close 
the gap, whereas spin–orbit coupling 
counteracts the alignment and reopens 
it. This competition creates regions in 
parameter space where the gap is inverted. 
Because the nanowire is effectively a 1D 
system, the surface is limited to the end 
points, where a gapless Majorana state is 
predicted to appear19,20. In an alternative 
1D implementation21, the semiconductor 
nanowire is replaced by a chain of iron 
atoms on a lead substrate. In such a system 
the atomic magnetization can play the 
roles of both the bad and the good actor22, 
aligning the spins locally while disrupting 
the alignment by a rotation of the magnetic 
moment from one atom to the next.

These implementations have in common 
that the gap inversion is tuned by the 
variation of some parameter (typically the 
magnetic field or electron density). An 
alternative route to a 1D or 2D topological 
superconductor starts from the inverted 
bandgap of a 2D or 3D topological insulator 
and induces superconductivity in the edge 
or surface states11,23. Experiments in this 
direction are reported in refs 24–27.

No single implementation has yet 
emerged as the ‘ideal’ platform for the 
study of topological superconductivity, but 
the great variety of options holds promise 
for rapid experimental developments. 

In what follows, we give an overview 
of some of the manifestations of a real 
Majorana wavefunction that are waiting to 
be observed.

Majorana metal
Although a superconductor is a perfect 
conductor of electricity, it is typically a 
poor thermal conductor. In a normal 
metal, the addition of disorder would only 
make things worse, but a 2D topological 
superconductor will start to conduct heat 
if enough defects are introduced5. This 
unusual state of matter is called a thermal 
metal or Majorana metal, because Majorana 
fermions bound to defects are responsible 
for the heat conduction.

Defects create bound states within the 
superconducting gap. In a conventional 
superconductor, these will only rarely align 
in energy E (measured relative to the middle 
of the gap, Δ), so they are not an effective 
transport channel. An isolated Majorana 
bound state must have E = 0, otherwise its 
wavefunction would not be real. It is this 
mid-gap alignment of Majorana bound 
states that allows for resonant conduction 
if the density of defects is sufficiently large. 
The disorder-driven phase transition from 
a thermal insulator to a thermal metal has 
not yet been observed experimentally, but 
it is evident in computer simulations28,29, for 
instance as seen in Fig. 1.
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Figure 1 | Majorana metal in a computer simulation of a chiral p-wave superconductor. The main plot 
shows the thermal conductivity σ (in units of the thermal conductance, G0) as a function of system size L 
(in units of the mean free path, l)29. The data points at different disorder strengths (indicated by different 
colours) all collapse onto a pair of scaling curves, designated ‘metal’ and ‘insulator’. The ln L scaling is 
characteristic of a Majorana metal5, originating from a proliferation of Majorana bound states at E = 0. 
The inset shows the corresponding mid-gap peak in the density of states (DOS)28. Figure reproduced 
from: main plot, ref. 29, APS; inset, ref. 28, APS.
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Thermal quantum Hall effect
In the thermal insulating phase, the 
Majorana bound states are too far apart 
to allow for heat conduction in the 
interior of the system. What remains 
possible is conduction along the edge. The 
Majorana edge modes of a chiral p-wave 
superconductor produce the thermal 
analogue of the quantum Hall effect (Fig. 2).

We recall that the quantum Hall effect 
in a semiconductor 2D electron gas is 
associated both with a quantized electrical 
conductance and with a quantized thermal 
conductance. The quantization units are 
e2/h and LTe2/h, respectively, with T the 
temperature and L = (1/3)(πkB/e)2 the 
Lorenz number. The superconducting 
counterpart is called the thermal quantum 
Hall effect, because only the thermal 
conductance is quantized. The fact that 
the wavefunction of a Majorana fermion 
is real rather than complex reduces the 
quantization unit by a factor of two5: an 
unpaired Majorana mode has a thermal 
conductance of G0 = (1/2)LTe2/h.

The complexity of heat measurements 
at low temperatures is an obstacle to the 
detection of the thermal quantum Hall 
effect, but there is a purely electrical 
alternative30. Although the Majorana 
edge mode carries no charge on average, 
it is not in an eigenstate of charge, so 
there are quantum fluctuations. These 
produce a quantized shot noise power of 
(1/2)e2/h per eV of voltage bias, where the 
factor 1/2 has the same origin as in the 
quantized thermal conductance.

Majorana qubits
Although widely separated Majorana 
bound states are not useful for transport 
properties, they promise to be very useful 
for the storage of quantum information7. 
Because they are all pinned to E = 0, they 
introduce a degeneracy in the ground 
state of the topological superconductor. 

The degeneracy factor 2N is exponential 
in the number N of pairs of bound 
states — Majorana qubits — so a massive 
amount of information can be stored in 
the ground state. The same information 
can be stored in quantum superpositions 
of the states of N electron spins, but such 
superpositions suffer from dephasing. An 
isolated Majorana has no phase; hence, 
as long as the bound states remain far 
apart, the quantum information should be 
protected from dephasing.

An elementary operation on the 
Majorana qubits is the pairwise exchange 
(braiding) of two Majoranas. If the 
operation is carried out very slowly, 
adiabatically, the superconductor remains 
in the ground state. For a non-degenerate 
state, this would amount to multiplication 
by a phase factor, but a degenerate state is 
transformed by a unitary operation. This 
is the celebrated non-Abelian exchange 
statistics of Majoranas6 — non-Abelian 
because unitary operations do not commute. 
Not all unitary operations can be obtained 
by exchanging Majorana qubits, but a hybrid 
design31,32 that also includes some well-
developed superconducting electronics33,34 
is a promising road towards a fault-tolerant 
quantum computer.

From 2D to 3D
The central new insight of topological 
insulators is that topologically non-trivial 
band structures are not limited to 2D 
systems, such as the quantum Hall insulator: 
a 3D bulk insulator can have an electrically 
conducting surface if time-reversal 
symmetry is not broken35,36. This insight 
carries over to topological superconductors: 
a 3D superconductor can be thermally 
insulating in the bulk with a thermally 
conducting surface. The surface conduction 
is topologically protected in the absence 
of a magnetic field or magnetic impurities. 
A promising route to 3D topological 

superconductivity, followed in copper-doped 
bismuth selenide37,38, is to start from a 3D 
topological insulator and dope it to induce 
a transition into a superconducting state. 
The transition brings some remarkable new 
physics into play.

The quasiparticles on the surface of a 
3D topological insulator are massless Dirac 
fermions, familiar from graphene. The 
superconducting counterpart has massless 
Majorana fermions on its surface. Both 
quasiparticles have the same relativistic band 
structure, E2 = v2(px

2 + pz
2), with energy-

independent velocity v and momentum 
(px, pz) in the xz plane. The Dirac 
Hamiltonian H0 = –iħv(σx∂/∂x + σz∂/∂z) that 
produces this band structure (with Pauli 
matrices σx and σz) is purely imaginary. 
For Dirac fermions we may add a disorder 
potential V(x,z), but this is forbidden 
for Majorana fermions because H0 +V is 
then no longer imaginary and the real 
wave equation would become complex. 
The physical implication is that Majorana 
fermions transport heat ballistically over the 
surface of the topological superconductor, 
unscattered by disorder. This is a 
fundamental difference from topological 
insulators, in which disorder cannot localize 
the surface electrons, but it does scatter 
them and degrades the ballistic motion 
to diffusion.

Outlook
Thinking ahead about applications of 
topological insulators, one looks at 
spintronics, because of the spin–momentum 
locking of the conducting surface electrons. 
The same helicity applies to Majorana 
fermions, but their charge neutrality makes 
applications in that context less natural. 
Much of the present research aims at the 
integration of topological superconductivity 
into superconducting electronics, with 
the aim of improving the robustness 
of a quantum computation by storing 
information in Majorana bound states. 
Mobile Majorana fermions, either in edge 
states or in surface states, have thermal 
conduction properties that may or may not 
find applications. What is evident at this 
time is that topological superconductors 
provide a laboratory for the study of 
the remarkable complexity of quantum 
mechanics without complex numbers.� ❐
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Figure 2 | Schematic of the thermal quantum Hall effect. In a 2D topological superconductor, a transverse 
temperature difference drives a longitudinal heat current, carried by chiral Majorana edge modes. This 
heat conduction mechanism dominates at low disorder strengths, when the Majorana bound states 
(ellipses) in the interior are sufficiently far apart that the system has not yet reached the Majorana metal 
phase depicted in Fig. 1.
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Topological mechanics
Sebastian D. Huber

Electronic topological insulators have inspired the design of new mechanical systems that could soon 
find real-life applications.

Acoustic metamaterials are artificially 
designed mechanical structures with 
the purpose of obtaining emergent 

functionalities such as vibration isolation, 
acoustic cloaking or adaptive behaviour. 
In this Commentary, I review how a 
recently established bridge between the 
phenomenology of electrons in topological 
insulators1–3 and the world of classical 
mechanical systems might lead to new design 
principles for such metamaterials.

At first sight, there seems to be an 
unbridgeable gap between the quantum 
mechanical description of electrons in solids 
on the one hand and Newton’s equations of 
motion describing mechanical modes, or 
phonons, on the other. When it comes to 
geometric or topological properties, however, 
this need not be the case.

To understand this connection, let us 
remind ourselves of the Foucault pendulum. 
In 1851, Léon Foucault demonstrated 
the rotation of the Earth by showing that 
the plane of swing of a pendulum rotates 
throughout the day. This rotation obtained 
a beautiful geometric description with 
the introduction of the concept of parallel 
transport more than 60 years later4: the angle 
of rotation does not depend on the precise 
details of the pendulum, but only on the solid 
angle that the pendulum’s point of support 
traces out in a day.

While the example of the Foucault 
pendulum is rooted in classical mechanics, 
research on geometric phases only really took 
off in the framework of quantum mechanics 
in the early 1980s. Sir Michael Berry 

demonstrated the geometric nature of 
phases appearing in adiabatic quantum 
evolution5, David Thouless and co-workers6 
described the quantum Hall effect in 
terms of a topological invariant called the 
Chern number, and Barry Simon uncovered 
the mathematical connection between 
the two7.

Only in 2005, with the prediction8 of a 
‘topological insulator’, was a whole new world 
of topology-dominated free-electron physics 
unravelled. But how is this world related to 
classical mechanics?

It had already been discovered in 1985 
that cousins of Berry’s phases also appear 
in classical systems9. Unlike in the context 
of metamaterials, which typically involve 
an extensive number of degrees of freedom, 
Hannay9 focused on systems with single (or 
few) modes. Catalysed by the birth of the 
field of electronic topological insulators, 
topology found a new path back to 
classical systems10–13.

To appreciate this new analogy, let us 
consider the equations of motion for a set of 
coupled oscillators. 

x..i  = –Dij xj  + Aij x. j �(1)

Here, the real, symmetric and positive-
definite dynamical matrix D encodes 
the forces between the oscillators xi. The 
skew-symmetric matrix A describes the 
conservative (non-dissipative) coupling 
between positions and velocities. The 
second-order time derivative in Newton’s 
equations seems to be incompatible with 

the Schrödinger equation. However, one can 
rewrite equation (1) in a form that offers 
more insight14 

 

∂t
i =√ D 

T
x √ D 

T
x√ D 

T

ix. ix.√ D
0

iA
∂ �(2)

which casts Newton’s equations into a 
Hermitian eigenvalue problem for the 
frequencies ω, akin to the Schrödinger 
equation. Besides being first-order in 
time, this equation makes one important 
symmetry explicit: owing to the reality of the 
coefficients in equation (1), for any solution 
of the equations of motion with frequency 
ω there is a corresponding solution with –ω. 
The ‘supersymmetric’10 block form of the 
matrix in equation (2) encodes this structure 
in a ‘particle–hole’ symmetry usually known 
from the problem of superconductivity.

Given this set-up, three routes to 
topological mechanical systems present 
themselves. First, one can directly capitalize 
on the intrinsic particle–hole symmetry. 
In this case, topological boundary modes 
arise in the gap around zero frequency. This 
route is particularly appealing, as it seems to 
be the only way to connect topology to the 
thermodynamic or low-energy properties 
of a metamaterial (Fig. 1). (Remember that 
there is no Pauli principle for phonons to fill 
Bloch bands.)

A second route would be to engineer a 
topological dynamical matrix D directly. In 
this case, the stable surface states lie at finite 
frequencies (Fig. 1). Although they are not of 
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