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We propose and analyze a high-fidelity hot gate for generic spin-resonator systems which allows for
coherent spin-spin coupling, in the presence of a thermally populated resonator mode. Our scheme is
non-perturbative, applies to a broad class of physical systems, including for example spins coupled to
circuit-QED and surface acoustic wave resonators as well as nanomechanical oscillators, and can be
implemented readily with state-of-the-art experimental setups. We provide and numerically verify
simple expressions for the fidelity of creating maximally entangled states under realistic conditions.

Motivation.—The physical realization of a large-scale
quantum information processing (QIP) architecture con-
stitutes a fascinating problem at the interface between
fundamental science and engineering [1, 2]. With single-
qubit control steadily improving in various physical se-
tups, further advances towards this goal currently hinge
upon realizing long-range coupling between the logical
qubits, since coherent interactions at a distance do not
only relax some serious architectural challenges [3], but
also allow for applications in quantum communication,
distributed quantum computing and some of the high-
est tolerances in error-correcting codes based on long-
distance entanglement links [2, 4, 5]. One particularly
prominent approach to address this problem is to inter-
face qubits with a common quantum bus which effectively
mediates long-range interactions between distant qubits,
as has been demonstrated successfully for superconduct-
ing qubits [6, 7] and trapped ions [8].

Executive summary.—In the spirit of the celebrated
Sørensen-Mølmer or similar gates for hot trapped ions
[9–20], here we propose and analyze a generic bus-based
quantum gate between distant (solid-state) qubits which
allows for coherent spin-spin coupling, even in the pres-
ence of a thermally populated resonator mode. Our
scheme does not rely on a perturbative treatment, but
is rather stroboscopic in nature; thus, for certain times
the qubits entirely disentangle from the (thermally pop-
ulated) resonator mode, providing a gate that is insen-
sitive to the state of the resonator and therefore does
not require ground-state cooling of the resonator mode.
As a consequence, our scheme may provide a potential
solution to the solid-state QIP interconnect problem be-
tween the quantum (for encoding quantum information)
and the classical layer (for classical control and read-out)
[21], since it allows operating and coupling qubits at el-
evated temperatures ∼ (1− 4) K (as opposed to milli-
Kelvin temperatures), so that the qubit plane may be in-
tegrated right next to the classical cryogenic electronics.
Since we consider a very generic spin-resonator system,
our approach is accessible to a broad class of physical
systems [22], including for example circuit QED setups

with both (i) superconducting qubits [6, 23, 24], and (ii)
spin qubits [25–42], (iii) spins coupled to surface acoustic
wave (SAW) resonators [43–45], and (iv) spins coupled to
nanomechanical oscillators [46–50]; compare Fig. 1. We
discuss in detail the dominant sources of errors for our
protocol, due to rethermalization of the resonator mode
and qubit dephasing, and numerically verify the expected
error scaling.

Analytical model: Hot gate.—We consider a set of spins
(qubits) i = 1, 2, . . . with transition frequencies ωq cou-
pled to a common (bosonic) cavity mode of frequency ωc,
as described by the Hamiltonian (~ = 1)

H = ωca
†a+

ωq
2
Sz + gS ⊗

(
a+ a†

)
, (1)

S =
∑
i,α

ηαi σ
α
i , (2)

where ~σi refer to the usual Pauli matrices describing the
qubits, Sz =

∑
i σ

z
i and a is the bosonic annihilation

operator for the resonator mode. The operator S is
a generalized (collective) spin operator which accounts
for both transversal (α = x, y) and longitudinal (α = z)
spin-resonator coupling; the unit-less parameters ηαi cap-
ture potential anisotropies and inhomogeneities in the
single-photon/phonon coupling constants gαi = ηαi g.
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Figure 1: (color online). Schematic illustration for a generic
spin-resonator system, comprising a set of spins {~σi} coupled
to a common resonator mode with a non-vanishing thermal
occupation. Exemplary candidate spin-resonator systems for
such a system include (for example) (a) spins coupled to trans-
mission line [28] or SAW resonators [43], and (b) spins coupled
to nanomechanical oscillators [47].
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Typically, for artificial atoms such as quantum dots
the qubit transition frequencies ωq are highly tunable. In
what follows, we consider the regime where ωq is much
smaller than all other energy scales; therefore, for the
purpose of our analytical derivation, effectively we take
ωq = 0. The robustness of our scheme against non-zero
splittings (ωq > 0) will be discussed below. In this limit,
the Hamiltonian given in Eq.(1) can be rewritten as

H = ωc

(
a+

g

ωc
S
)†(

a+
g

ωc
S
)
− g2

ωc
S2, (3)

which comprises a displacement of the cavity mode
a by (g/ωc)S. Using the relation UaU† = a +
(g/ωc)S, with the unitary (polaron) transformation U =
exp

[
g/ωcS

(
a− a†

)]
, Eq.(1) can be recast into the form

H = U

[
ωca
†a− g2

ωc
S2

]
︸ ︷︷ ︸

H0

U†, (4)

where we have used that S commutes with U . Now, let us
consider the time-evolution governed by the Hamiltonian
H. It reads

e−iHt = e−iUH0U
†t = Ue−iωcta

†aei
g2

ωc
tS2

U†, (5)

where the second equality directly follows from exp (x) =∑
n x

n/n! and U†U = 1. For certain times where ωctm =
2πm (with m integer), the first exponential equals the
identity, exp

[
−iωcta†a

]
= exp

[
−i2πma†a

]
= 1, since

the number operator n̂ = a†a has an integer spectrum
0, 1, 2, . . . . Thus, for tm = (2π/ωc)m, the full time evo-
lution reduces to

e−iHtm = ei
g2

ωc
tmS2

= exp
[
i2πm (g/ωc)

2 S2
]
. (6)

This exact relation is our main result, with two major
implications: (i) Our approach is not based on a per-
turbative argument; therefore, apart form Eq.(6), the
resonator-mediated qubit-qubit interaction does not lead
to any further undesired, spurious terms. (ii) Since the
unitary transformation given in Eq.(6) does not contain
any operators acting on the resonator mode, it is com-
pletely insensitive to the state of the resonator [9, 10, 12],
even though the spin-spin interactions present in S2 have
been established effectively via the resonator degrees of
freedom, and thus does not require cooling the resonator
mode to the ground state. For specific times, the time-
evolution in the polaron and the lab-frame fully coin-
cide and become truly independent of the phonon mode.
This statement holds provided that rethermalization of
the resonator mode can be neglected over the relevant
gate time. The experimental implications for this condi-
tion will be discussed below.

To further illustrate Eq.(6), let us consider three
paradigmatic examples [56]: (1) For longitudinal cou-
pling (ηzi = 1, ηxi = ηyi = 0), as could be realized (for
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Figure 2: (color online). Fidelity F with the maximally en-
tangled target state |Ψtar〉 = (|⇑⇓〉+ i |⇓⇑〉) /

√
2 for transver-

sal coupling (S = σx1 + σx2 ), the initial product state ρ (0) =
|⇑⇓〉 〈⇑⇓| ⊗ ρth (T ) and different temperatures kBT/ωc =
0, 1, 2, 3, 4, 5. Independently of the temperature T , the
spins periodically disentangle from the (hot) resonator mode
and systematically build-up entanglement among themselves.
While the peaks are merely independent of temperature, the
amplitude of the precursory oscillations do increase with tem-
perature. Inset: Occupation of the resonator 〈n̂〉t show-
ing small oscillations due to weak entanglement between the
qubits and the cavity mode [10]. Other numerical parameters:
ωq/ωc = Γ = 0, g/ωc = 1/16, κ/ωc = Q−1 = 10−5.

example) with defect spins coupled to nanomechanical
oscillators [47], we can identify the effective spin-spin
Hamiltonian Heff = Ωm (σz1 + σz2)

2, which results in a
relative phase φ = 4Ωm for the states |11〉 = |⇑⇑〉 , |00〉 =
|⇓⇓〉 as compared to the states |10〉 and |01〉, respec-
tively. By adding a local unitary on both qubits, such
that |0〉i → exp (−iφ/2) |0〉i and |1〉i → exp (iφ/2) |1〉i,
in total for φ = π/2 we obtain a controlled phase gate
UCphase = diag (1, 1, 1,−1) , which gives a phase of −1
exclusively to |11〉, while leaving all other states in-
variant. (2) Again for longitudinal coupling (ηzi = 1,
ηxi = ηyi = 0) and N ≥ 2 qubits, Eq.(6) results in
a unitary transformation U = exp

[
−iθI2

z

]
generated

by a non-linear top Hamiltonian describing precession
around the Iz =

∑
i σ

z
i axis with a rate depending on

the z-component of angular momentum [12]; as shown
in Ref.[12], this can be used to simulate nonlinear spin
models. (3) For transversal coupling with S = σx1 +σx2 , as
could be realized (for example) with quantum dot based
qubits embedded in circuit-QED cavities [28, 42] or SAW
cavities [43, 44], we have S2 = 2× 1 + 2σx1σ

x
2 . Up to an

irrelevant global phase φgp due to the first term ∼ 1, we
get

e−iHtm = e−iφgpexp
[
i4πm (g/ωc)

2
σx1σ

x
2

]
︸ ︷︷ ︸

≡Uxid(m,g/ωc)

, (7)
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which for m (g/ωc)
2

= 1/16 yields a maximally entan-
gling gate, that is Uxid (1, 1/4) |⇓⇓〉 = 1√

2
(|⇓⇓〉+ i |⇑⇑〉),

Uxid (1, 1/4) |⇑⇓〉 = 1√
2

(|⇑⇓〉+ i |⇓⇑〉) etc., i.e., initial
qubit product states evolve to maximally entangled
states, irrespectively of the temperature of the resonator
mode, on a timescale tmax = π/8geff (where geff =
g2/ωc); compare Fig.2 for an exemplary time evolu-
tion, starting initially from the product state ρ (0) =
|⇑⇓〉 〈⇑⇓| ⊗ ρth (T ), with the cavity mode in the ther-
mal state ρth (T ) = Z−1 exp

[
−βωca†a

]
, and β = 1/kBT .

Indeed entanglement peaks are observed at stroboscopic
times (ωctm = 2πm), independent of the temperature T ,
eventually culminating in a maximally entangled state at
time tmax.

Coupling to environment.—In the analysis above, we
have ignored the presence of decoherence, which in any
realistic setting will degrade the effects of coherent qubit-
resonator interactions. Therefore, we complement our
analytical findings with numerical simulations of the full
master equation for the system’s density matrix ρ,

ρ̇ = −i [H, ρ] + κ (n̄th + 1)D [a] ρ+ κn̄thD
[
a†
]
ρ

+
Γ

4

∑
i=1,2

D [σzi ] ρ, (8)

where the generic spin-resonator Hamiltonian H is given
in Eq.(1) and the last two dissipative terms in the first
line of Eq.(8), with D [a] ρ = aρa† − 1

2

{
a†a, ρ

}
and a

cavity mode decay rate κ = ωc/Q, describe rethermaliza-
tion of the cavity mode towards the thermal occupation
n̄th = (exp [~ωc/kBT ] − 1)−1 at temperature T ; here,
Q is the quality-factor of the cavity. The last line in
Eq.(8) describes dephasing of the qubits with a dephasing
rate Γ ∼ 1/T ?2 , where T ?2 is the time-ensemble-averaged
dephasing time. In Eq.(8) we have ignored single spin
relaxation processes, since the associated timescale T1

is typically much longer than T ?2 ; still, relaxation pro-
cesses could be included straightforwardly in our model
by adding the decay terms ρ̇ = · · · + T−1

1

∑
iD
[
σ−i
]
ρ

and the corresponding error (infidelity) could be analyzed
along the lines of our analysis shown below.

Numerical results.—To quantitatively capture the ef-
fects of decoherence, in the following we provide numer-
ical results of the Master equation Eq.(8), for the initial
product state ρ (0) = |⇑⇓〉 〈⇑⇓|⊗ ρth (T ), with the cavity
mode in the thermal state ρth (T ) = Z−1 exp

[
−βωca†a

]
,

and (transversal) spin-resonator coupling with ηxi = 1
and ηyi = ηzi = 0. As a figure of merit for our proto-
col, we consider the logarithmic negativity EN (which
ranges between 0 for separable states to at maximum 1
for two maximally-entangled qubits) to quantify the en-
tanglement between the two qubits, and the state fidelity
F = 〈Ψtar|%|Ψtar〉 with the maximally entangled target
state |Ψtar〉 = (|⇑⇓〉+ i |⇓⇑〉) /

√
2; here, with tra [. . . ] de-

noting the trace over the resonator degrees of freedom,
% = tra [ρ] refers to the density matrix of the qubits. As
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Figure 3: (color online). Logarithmic negativity EN (left) and
fidelity F (right) in the presence of noise. As a benchmark,
the solid (topmost) black line refers to the quasi-ideal limit
(Γ = 0, κ/ωc = Q−1 = 10−5 and kBT/ωc = 0), while the
red dashed curve accounts for a non-zero qubit level splitting
ωq/ωc = 0.1. The solid blue line also accounts for dephasing
of the qubits with a (rather large) dephasing rate Γ/ωc =
1% and finite thermal occupation of the resonator mode with
kBT/ωc = 5 (n̄th ≈ 4.5). The results are relatively insensitive
to the quality factor of the cavity, provided that κeff � Γ; the
green dash-dotted line (where Q = 103) is basically identical
to the Q = 105 scenario, whereas the brown dashed (lowest)
one with Q = 102 (that is, κ/ωc = Γ/ωc = 1%) shows a clear
reduction in EN and F . This result can be traced back to
the hot-gate requirement given in Eq.(9). Ideally, maximum
entanglement is reached for fct = 4, with several precursory
oscillation peaks at fct = 1, 2, 3. Other numerical parameters:
g/ωc = 1/8, ωq/ωc = 0 (except for the red dashed curve where
ωq/ωc = 0.1).

shown in Ref.[51], similar results can be obtained for the
average gate fidelity. Typical results from our numerical
simulations in the presence of noise are displayed in Fig.3.
As expected from our analytical results, for ωctm = 2πm
the two qubits disentangle from the thermally populated
resonator mode and systematically evolve towards the
maximally entangled target state |Ψtar〉; for example, for
g/ωc = 1/8 (as used in Fig.3), the spins evolve towards
Uxid (1, 1/8) |⇑⇓〉 = cos (π/16) |⇑⇓〉 + i sin (π/16) |⇓⇑〉 for
m = 1, Uxid (2, 1/8) |⇑⇓〉 = cos (π/8) |⇑⇓〉+i sin (π/8) |⇓⇑〉
for m = 2, and Uxid (3, 1/8) |⇑⇓〉 = cos (3π/16) |⇑⇓〉 +
i sin (3π/16) |⇓⇑〉 for m = 3, before the entanglement
build-up culminates in the fully-entangling dynamics
Uxid (4, 1/8) |⇑⇓〉 = (|⇑⇓〉+ i |⇓⇑〉) /

√
2. For all practical

purposes, this statement holds independently of the tem-
perature T and the associated thermal occupation of the
resonator mode n̄th ≈ kBT/~ωc, provided that the qual-
ity factor of the cavity Q is sufficiently high; a quantita-
tive statement specifying this regime will be given below.
Moreover, while our analytical treatment has assumed
ωq = 0, we have numerically verified that the proposed
protocol is robust against non-zero level splittings of the
qubits ωq/ωc . 0.1; compare the dashed line in Fig.3 and
further information provided in Ref.[51].

Gate time requirements: Error scaling.—As described
by Eq.(8), coupling to the environment leads to two dom-
inant error sources: (i) rethermalization of the resonator
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Figure 4: (color online). Errors (ξ = 1 − Fmax) due to rethermalization of the cavity mode (a) and qubit dephasing (b).
(a) Rethermalization-induced error for kBT/ωc = 2 (blue) and kBT/ωc = 4 (red), and Γ = 0. The error ξκ is found to be
independent of µ = g/ωc: µ = 1/16 (squares) and µ = 1/8 (blue circles and red diamonds). (b) Dephasing induced errors for
µ = 1/4 (squares), µ = 1/8 (circles) and µ = 1/16 (diamonds); here, κ/ωc = 10−6 and kBT/ωc = 0.01. In both cases the
linear error scaling is verified. Other numerical parameters: ωq/ωc = 0. (c) Total error ξ as a function of both the effective
rethermalization rate ∼ κ/ωcn̄th ∼ n̄th/Q and the spin dephasing rate ∼ Γ/ωc for g/ωc = 1/16, kBT/ωc = 2 and ωq = 0.

mode with an effective rate ∼ κn̄th, and (ii) dephasing of
the qubits on a timescale ∼ T ?2 . For any hot gate, the as-
sociated gate time tgate ∼ g−1

eff , with geff = g2/ωc = µ2ωc,
has to be shorter than the time-scale associated with
the effective (thermally-enhanced) rethermalization rate
κeff = κn̄th ≈ kBT/Q; the last approximation holds for
kBT � ωc. For the gate described above [see Eq.(6)],
this directly leads to the requirement

g2/ωc � kBT/Q ⇔ kBT � Qµ2ωc. (9)

Thus, for T = 1K (kBT/2π ≈ 20GHz) and a cavity
quality factor Q ≈ 105 − 106, we need geff/2π �
(20− 200) kHz. Provided that our assumption ωc � ωq
is still fulfilled, for fixed temperature T , quality factor Q
and coupling g, relation (9) may be conveniently fulfilled
by choosing ωc sufficiently small, up to the lower limit
ωc ≥ 4g (which is needed to fulfill m ≥ 1 [51]) and at
the cost of a potentially relatively large device (since the
device dimensions scale with ∼ λc ∼ ω−1

c ). Conversely,
for fixed µ = g/ωc [26, 44, 52], Eq.(9) can be achieved by
choosing ωc sufficiently large. In addition, the gate time
has to be short compared to the qubit’s dephasing time
T ?2 ∼ Γ−1, which gives the second requirement

g2/ωc � Γ ⇔ Γ� µ2ωc. (10)

For concreteness, let us consider a specific setup where
conditions (9) and (10) can be met with state-of-the-
art technology: Quantum dots (QDs) have been suc-
cessfully integrated with superconducting microwave cav-
ities, with a relatively large charge-cavity coupling of
gch/2π ∼ (20− 100) MHz [34–37, 39]. For QD spin
qubits a vacuum Rabi frequency of gsp/2π ∼ 1MHz
has been predicted [27, 28, 35], with the potential to
increase this coupling to ∼ 10MHz with new, recently
demonstrated cavity designs [53]. Furthermore, for su-
perconducting transmission line resonators quality fac-

tors Q ∼ 106 have been demonstrated [54]. Then, tak-
ing gsp/2π = 10MHz, ωc/2π ≈ (0.16 − 1)GHz, i.e.,
geff/2π ≈ (0.1 − 0.6)MHz, and Q = 106, conditions
(9) and (10) can be met simultaneously for tempera-
tures T ∼ 1K [since T � 5(30)K to fulfill condition
(9) for geff/2π ≈ 0.1(0.6)MHz] and dephasing timescales
T ?2 ∼ 100µs [since Γ/2π � (0.1− 0.6) MHz to fulfill con-
dition (10)], as has been demonstrated with isotopically
purified Si samples [55]. Therefore, a faithful implemen-
tation of our gate will not require cooling to milli-Kelvin
temperatures. Similar promising estimates also apply to
spin-qubits coupled to SAW-resonators [51].

In the following, we quantify the infidelities induced
by the two error sources outlined above: Rethermaliza-
tion of the resonator mode during the gate leads to errors
(infidelities) if the resonator is entangled with the qubits.
Due to leakage of which-way information, resonator noise
leads to qubit dephasing at a rate proportional to the
relevant separation in phase space, that is the square of
the resonator displacement µ = g/ωc [47]. The effective
rethermalization-induced dephasing rate for the qubits is
then Γeff ∼ κn̄th (g/ωc)

2. To obtain a simple estimate for
the rethermalization-induced error, this effective rate Γeff

is multiplied with the relevant gate time which scales as
tgate ∼ ωc/g

2, yielding the error ξκ ∼ (κ/ωc) n̄th, which
is independent of the spin-resonator coupling strength
g [24, 47, 51]. However, since the overall gate time
tgate ∼ ωc/g

2 increases for small µ = g/ωc, errors will
accumulate due to direct qubit decoherence processes.
Accordingly, errors due to qubit dephasing are expected
to scale as ξΓ ∼ Γ/geff ∼ µ−2Γ/ωc. This simple linear
scaling holds for a Markovian noise model where qubit de-
phasing is described by a standard pure dephasing term
[compare Eq.(8)] leading to an exponential loss of coher-
ence ∼ exp [−t/T ?2 ]; note that for non-Markovian qubit
dephasing a better, sub-linear scaling can be expected
[43, 47]. For small infidelities (geff � κeff ,Γ), the indi-
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vidual linear error terms due to cavity rethermalization
and qubit dephasing can be added independently, yield-
ing the total error

ξ ≈ ακ (κ/ωc) n̄th + αΓΓ/ωc. (11)

This simple linear error model has been verified numeri-
cally; compare Fig.4. Based on these results we extract
the coefficients ακ ≈ 4 (which is approximately indepen-
dent of g [24, 51]) and αΓ ≈ 0.1/µ2, i.e., αΓ ≈ 26(6.5)
for µ = 1/16(1/8). For gsp/2π ≈ 10MHz [27, 28, 53], a
relatively low resonator frequency ωc/2π = 16gsp/2π =
160MHz, T = 1K (corresponding to n̄th ≈ 130), Q = 105

[53, 54] and a realistic dephasing rate Γ/2π ≈ 0.1MHz
[55], that is κ/ωcn̄th ≈ 1.3× 10−3 and Γ/ωc ≈ 6× 10−4,
our estimates then predict an overall infidelity of ξ ≈ 2%,
with the potential to reach error rates ξ ≈ 0.2% below the
threshold for quantum error correction for state-of-the-
art experimental parameters (Q ≈ 106, Γ/2π ≈ 10kHz)
[4, 54, 55]. This simple estimate is corroborated by nu-
merical simulations that fully account for higher-order er-
rors; compare the density plot in Fig.4(c). Note that the
error estimate given in Eq.(11) assumes perfect timing of
the gate, as the maximum fidelity is reached exactly at
time tmax, whereas under experimentally realistic condi-
tions there will be a residual error due to imperfect timing
of the gate. However, as shown in Ref.[51], for sufficiently
small, but realistic timing accuracies of (ωc/2π) ∆t . 1%
and small spin-resonator coupling g/ωc . 1/16 (imply-
ing small oscillation amplitudes), the effects of time-jitter
become negligible.

Conclusions & Outlook.—To conclude, we have pro-
posed and analyzed a high-fidelity hot gate for generic
spin-resonator systems which allows for coherent spin-
spin coupling, even in the presence of a thermally popu-
lated resonator mode. While we have mostly focused on
just two spins, our scheme fully applies to more than
two spins, which should allow for the preparation of
maximally entangled multi-partite states; as shown in
Ref.[11] in the context of trapped ions, a propagator of
the form given in Eq.(6) applied to the initial product
state |00 · · · 0〉 may be used to generate states of the
form 1/

√
2
(
|00 · · · 0〉+ eiφ |11 · · · 1〉

)
, where |00 · · · 0〉 and

|11 · · · 1〉 are product states with all qubits in the same
state |0〉 or |1〉, respectively.
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I. THERMAL OCCUPATION

Here, we first provide typical thermal occupation num-
bers n̄th for relevant experimental parameter regimes. At
a temperature T = 4K, a (mechanical) oscillator of fre-
quency ωc/2π ∼ (1− 10) GHz has an thermal equilib-
rium occupation number much larger than one, n̄th ≈
8− 80: compare Fig.S1.

II. POLARON VS. LAB FRAME

In this Appendix we show that for stroboscopic times
the ideal time evolution in the lab frame fully coincides
with the one in the polaron frame.

In the ideal (noise-free) scenario, the evolution of the
system in the lab frame, comprising both spin and res-
onator degrees of freedom, is described by Schrödinger’s
equation

i
d

dt
|ψ〉t = H |ψ〉t . (S1)

In the polaron frame, the time evolution is governed by

i
d

dt
˜|ψ〉t = H0

˜|ψ〉t, (S2)
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Figure S1: (color online). Thermal occupation n̄th =
(exp [~ωc/kBT ]−1)−1 (black solid line) and high-temperature
approximate result n̄th ≈ kBT/~ωc (red dashed line). For
T = 4K and ωc/2π = 1GHz (ωc/2π = 10GHz), we have
kBT/~ωc ≈ 80 (kBT/~ωc ≈ 8). For T = 1K and ωc/2π =
1GHz (ωc/2π = 10GHz), we have n̄th ≈ 20 (n̄th ≈ 2).

where ˜|ψ〉t = U† |ψ〉t, U = exp
[
µS
(
a− a†

)]
, and H0 =

U†HU = ωca
†a − g2

ωc
S2; the polaron transformation U

entangles spin with resonator degrees of freedom. The
solution to Eq.(S2) reads ˜|ψ〉t = exp [−iH0t] ˜|ψ〉0. Using
the relation exp

[
−iωcta†a

]
= exp

[
−i2πma†a

]
= 1 for

stroboscopic times (ωctm = 2πm, with m integer), full
time evolution in the polaron frame reduces to

˜|ψ〉tm = ei2πmµ
2S2 ˜|ψ〉0. (S3)

Transforming back to the lab frame with ˜|ψ〉t =
U† |ψ〉t, and using that U commutes with the propagator
exp

[
i2πmµ2S2

]
, we obtain the (stroboscopic) solution in

the lab frame, |ψ〉tm = ei2πmµ
2S2 |ψ〉0, which fully coin-

cides with the one in the polaron frame.

III. GATE TIME

Ideally, the gate time tgate has to fulfill two condi-
tions: (i) it has to be chosen stroboscopically, that is
ωctgate = 2πm, with m = 1, 2, . . . with (ii) the pa-
rameters such that mµ2 = 1/16 in order to obtain
a maximally-entangling gate (in the absence of noise).
Combination of (i) and (ii) then yields the ideal gate
time

tmax =
π

8geff
, (S4)

as given in the main text. The gate time tmax should be
short compared to the relevant noise timescales, which
yields the requirement geff � κeff ,Γ. In principle, large
values of geff = g2/ωc can be obtained by choosing the
resonator frequency ωc sufficiently small, provided that
ωc can be tuned independently of g. This can be done up
to the lower bound ωc ≥ 4g which follows directly from
the requirement m = 1/

(
16µ2

)
≥ 1.

IV. SPIN-SPIN COUPLING IN DISPERSIVE
REGIME

We consider two identical spins homogeneously cou-
pled to a common resonator mode. The dynamics are
assumed to be governed by the Jaynes-Cummings Hamil-
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tonian

H = ∆ (Sz1 + Sz2 ) + g
[
a
(
S+

1 + S+
2

)
+ a†

(
S−1 + S−2

)]
,

(S5)
which is valid within the rotating-wave approximation
for
√
n̄thg,∆ � ωc, with the detuning ∆ = ωq −

ωc. In the following we consider the dispersive regime,
where the spin-resonator coupling is strongly detuned
(
√
n̄thg � ∆). In this regime, the spin-resonator cou-

pling can be treated perturbatively. To stress the per-
turbative treatment we write

H = H0 +H1, (S6)
H0 = ∆Sz, (S7)
H1 = g

(
aS+ + a†S−

)
, (S8)

where Sα = Sα1 + Sα2 (for α = ±, z) are collective spin
operators. We perform a standard Schrieffer-Wolff trans-
formation

H̃ = eAHe−A (S9)

≈ H0 +H1 + [A,H0 +H1] +
1

2
[A, [A,H0]] ,(S10)

where the operator A (with A† = −A) is assumed to have
a perturbative expansion in g, i.e., A = 0 + O (g) + . . .
By choosing

[A,H0] = −H1, (S11)

one obtains a Hamiltonian H̃ without linear coupling in
g,

H̃ ≈ H0 +
1

2
[A,H1] . (S12)

For the Hamiltonian given in Eq.(S6), the condition in
Eq.(S11) is fulfilled by the choice

A =
g

∆

(
aS+ − a†S−

)
, (S13)

which yields the Hamiltonian

H̃ ≈
(

∆ +
g2

∆
+ 2

g2

∆
a†a

)
Sz +

g2

∆

(
S+

1 S
−
2 + S−1 S

+
2

)
.

(S14)
Here, the last two terms describe a cavity-state depen-
dent dispersive shift of the qubit transition frequencies
and spin-spin coupling via virtual occupation of the cav-
ity mode, respectively. The strength of the effective spin-
spin coupling is given by

geff =
g2

∆
=

ε√
n̄th

g, (S15)

where we have set
√
n̄thg/∆ = ε � 1 in order to reach

the regime of validity for Eq.(S14), given by
√
n̄thg � ∆� ωc. (S16)

By transforming the Hamiltonian given in Eq.(S14) back
into the lab-frame, we recover the result presented in
Ref.[S1], namely

H ≈
[
ωc + 2

g2

∆
(Sz1 + Sz2 )

]
a†a+

(
ωq +

g2

∆

)
(Sz1 + Sz2 )

+
g2

∆

(
S+

1 S
−
2 + S−1 S

+
2

)
. (S17)

Here, spins and cavity mode are still coupled by the ac
Stark shift term ∼ a†a. Accordingly, one obtains an ef-
fective pure spin Hamiltonian with flip-flop interactions
provided that one can neglect any fluctuations of the pho-
ton number a†a → n̄ =

〈
a†a
〉
, where n̄ is the average

number of photons in the cavity mode [S2].
Since the operator Sza†a in Eq.(S14) has an inte-

ger spectrum, one may wonder whether for stroboscopic
times the spins disentangle from the resonator mode here
as well. Thus, let us consider the full time evolution gen-
erated by Eq.(S5)

e−iHt = e−iU
†H̃Ut = U†e−iH̃tU (S18)

≈ U†
[
exp

[
−it

(
δ + δ̃a†a

)
Sz (S19)

−ig̃t
(
S+

1 S
−
2 + S−1 S

+
2

)]]
U,

with U = exp (A), δ = ∆ + g2/∆, δ̃ = 2g2/∆ and g̃ =
g2/∆. Note that Eq.(S19) is an approximate statement,
relying on a perturbative expansion in the coupling g.
Since the flip-flop interaction conserves Sz, we find

e−iHt ≈ U†e−iδtSze−iδ̃tSza†ae−ig̃t(S+
1 S
−
2 +S−1 S

+
2 )U. (S20)

For stroboscopic times δ̃t = 2πm, e−iδ̃tS
za†a = 1, yield-

ing

e−iHt ≈ U†e−iHspintU, (S21)

where Hspin = δSz + g̃
(
S+

1 S
−
2 + S−1 S

+
2

)
is a pure spin

Hamiltonian, without any coupling to the resonator
mode. However, in contrast to our scheme presented in
the main text, the full time evolution does not reduce to
a pure spin problem, since the Schrieffer-Wolff transfor-
mation U = exp

[
g
∆

(
aS− − a†S+

)]
does not commute

with e−iHspint, but rather entangles the qubits with the
resonator mode.

V. SCHRIEFFER-WOLFF TRANSFORMATION

If one restricts oneself to the regime g � ωc, the result
stated in Eqn.(6) may also be derived in the perturbative
framework of a Schrieffer-Wolff transformation. For con-
creteness, assuming ωq = 0, we consider the Hamiltonian

H = ωca
†a︸ ︷︷ ︸

H0

+ gSx ⊗
(
a+ a†

)︸ ︷︷ ︸
V

, (S22)
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where Sx =
∑
i η
x
i σ

x
i is a collective operator. In the fol-

lowing, and contrary to our general analysis in the main
text, we restrict ourselves to the regime where the spin-
resonator coupling V can be treated perturbatively with
respect to H0, that is g � ωc. Performing a Schrieffer-
Wolff transformation H̃ = eAHe−A as presented in Sec.
IV, with A = − g

ωc
Sx
(
a− a†

)
, we obtain an effective

Hamiltonian H̃ where the slow subspace is decoupled
from the fast subspace up to second order in g. Explicitly
it reads [compare Eq.(6)]

H̃ ≈ ωca†a−
g2

ωc
S2
x. (S23)

VI. NON-ZERO QUBIT LEVEL SPLITTING

In our derivation of Eq.(7), starting from the generic
spin-resonator Hamiltonian given in Eq.(1), we have as-
sumed ωq = 0. As demonstrated also numerically in Sec-
tion VIII below, small level splittings with ωq ≈ 0.1ωc
may still be tolerated without a significant loss in the
amount of generated entanglement and the fidelity with
the maximally entangled target state.

In this Appendix we investigate analytically the effects
associated with a finite splitting ωq > 0. In this case,
Eq.(4) can be generalized straightforwardly to

H = U [ωca
†a− g2

ωc
S2︸ ︷︷ ︸

H0

+
ωq
2
S̃z]U†, (S24)

where S̃z = U†SzU , with U = exp
[
g
ωc
S
(
a− a†

)]
. In

what follows, we restrict ourselves to the (experimen-
tally) most relevant regime where µ = g/ωc � 1, which
allows for a simple perturbative treatment. Expansion in
the small parameter µ yields

S̃z ≈ Sz − µ
(
a− a†

)
[S, Sz] +

µ2

2

(
a− a†

)2
[S, [S, Sz]] .

(S25)
Specifically, for S =

∑
i σ

x
i (as considered in the main

text) we then obtain

S̃z ≈ Sz + 2i
g

ωc
Sy
(
a− a†

)
+ 2

(
g

ωc

)2

Sz
(
a− a†

)2
,

(S26)
which leads to an additional (undesired) contribution in
Eq.(S24) of the form

ωq
2
S̃z ≈ ωq

2
Sz + ε

[
igSy

(
a− a†

)
+
g2

ωc
Sz
(
a− a†

)2]
.

(S27)
Here, in contrast to the ideal HamiltonianH0 in Eq.(S24)
the spins are not decoupled from the (hot) resonator
mode. However, apart from being detuned by at least

ωc−ωq, the undesired terms—that lead to entanglement
of the spins with the (hot) resonator mode—are sup-
pressed by the small parameter ε = ωq/ωc � 1. In the
limit ωq → 0 (ε→ 0) we recover the ideal dynamics.

VII. SAW-BASED SPIN-RESONATOR SYSTEM

Here, we provide further details on how to implement
experimental candidate systems governed by the class of
Hamiltonians given in Eq.(1), using quantum dots em-
bedded in high-quality surface acoustic wave (SAW) res-
onators [S3, S4]. For similar considerations based on (for
example) transmission-line resonators or nanomechanical
oscillators, we refer to Refs.[S5] and [S6], respectively.

Charge qubit.—A single electron in a double quantum
dot (DQD) coupled to a SAW resonator can be described
by

Hcharge =
ε

2
σz + tcσ

x+ωca
†a+gchσ

z⊗
(
a+ a†

)
, (S28)

where ε is the interdot detuning parameter, tc the tunnel
coupling between the dots, gch = eφ0F (kd) sin (kl/2) the
bare single-phonon coupling strength (assuming a sine-
like mode function of the piezoelectric potential, with a
node tuned between the two dots separated by a dis-
tance l), and the (orbital) Pauli operators are defined as
σz = |L〉 〈L| − |R〉 〈R| and σx = |L〉 〈R| + |R〉 〈L|, re-
spectively [S3]. In our expression for gch, e refers to the
electron’s charge, and φ0 to the piezoelectric potential
associated with a single SAW phonon; the decay of the
SAW resonator mode into the bulk is captured by the
factor F (kd), where d is the distance between the DQD
and the surface and k = 2π/λc the wavenumber of the
resonator mode [S3]. In the computational basis, where
the dot Hamiltonian Hdot = ε

2σ
z + tcσ

x is diagonal, with
the electronic eigenstates

|+〉 = sin θ |L〉+ cos θ |R〉 , (S29)
|−〉 = cos θ |L〉 − sin θ |R〉 , (S30)

where the mixing angle is given by tan θ = 2tc/ (ε+ Ω),
Ω =

√
ε2 + 4t2c , the spin-resonator Hamiltonian given in

Eq.(S28) can be rewritten as

Hcharge = ΩSz + ωca
†a+ gxSx ⊗

(
a+ a†

)
+gzSz ⊗

(
a+ a†

)
, (S31)

where the spin operators in the logical qubit basis are
Sz = (|+〉 〈+| − |−〉 〈−|) /2, Sx = (|+〉 〈−|+ |−〉 〈+|) /2
and

gx = 4gch sin θ cos θ, (S32)
gz = 2gch

(
cos2 θ − sin2 θ

)
. (S33)

Note that in the limit where δ, gch � ωc, with δ = Ω−ωc,
one can perform a rotating-wave approximation yielding
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the standard Jaynes-Cummings Hamiltonian [S7]. Fi-
nally, note that the spin-resonator Hamiltonian given in
Eq.(S31) belongs to the general class of Hamiltonians de-
fined in Eq.(1). In particular, at the charge degeneracy
point ε = 0, where sin θ = cos θ = 1/

√
2, the Hamiltonian

given in Eq.(S31) reduces to

Hcharge = 2tcS
z + ωca

†a+ 2gchS
x ⊗

(
a+ a†

)
. (S34)

Note that the (pseudo-) spin-resonator coupling is max-
imized at this charge-degeneracy point, i.e., when there
is no bias between the two dots, and decreases as one
moves away from this point [S5, S7, S8].

Coupling strength.—Following Ref.[S4], the single
phonon coupling strength gch may be expressed as

gch

ωc
=ζch=

√
αeff

√
l2λ

V
, (S35)

where V is the mode volume associated with the res-
onator mode and αeff = αK2c/vsεr is an effective fine-
structure constant, defined in terms of the fine structure
constant α ∼ 1/137, the (material-specific) electrome-
chanical coupling coefficient K2 (as a widely used mea-
sure to quantify the piezoelectric coupling strength), the
speed of light c, the SAW speed of sound vs and the rel-
ative dielectric constant εr. The coupling parameter K2

describes piezoelectric stiffening and may be expressed
as K2 = e2

14/cε, where e14, c, and ε refer to represen-
tative values of the piezoelectric, the elasticity and the
dielectric tensor, respectively. Typical values for αeff/α
range from αeff/α ∼ 10 for GaAs up to αeff/α ? 100 for
strongly piezoelectric materials such as LiNbO3 or ZnO,
underlining the potential of SAW based systems to reach
the ultra-strong coupling regime [S4]. For a typical SAW
penetration length ∼ 0.3λ close to the surface, Eq.(S35)
further simplifies to gch/ωc ≈ (0.5− 1.5)

√
l2/A, where A

refers to the surface mode area. When expressing αeff in
terms of the fundamental material parameters, Eq.(S35)
can be rewritten as

gch

ωc
≈ ee14

εvs

√
1

ρvs

√
l2λ

V
. (S36)

This estimate also follows from the expression given
above, gch = eφ0F (kd) sin (kl/2), with φ0 ≈
(e14/ε)

√
~/2ρV ωc [S3], close to the surface F (kd) ∼ 1,

and with sin (kl/2) ≈ kl/2 for kl/2 � 1 (in the spirit of
circuit QED setups).

Spin qubit.—In the two-electron regime of a DQD, one
can couple the effective dipole-moment of singlet-triplet
subspace to the resonator mode [S3, S9]. Within the
two-level subspace (all other levels are far detuned), the
dynamics are described by

Hspin =
Ω

2
σz+ωca

†a+gxσx⊗
(
a+ a†

)
+gzσz⊗

(
a+ a†

)
,

(S37)

where σz = |1〉 〈1| − |0〉 〈0|, σx = |1〉 〈0|+ |0〉 〈1| and

gx = eφ0F (kd) ηgeoκ0κ1, (S38)
gz = eφ0F (kd) ηgeo

[
κ2

1 − κ2
0

]
/2. (S39)

Here, ηgeo = sin (kxR) − sin (kxL) accounts for the po-
sitioning of the DQD with respect to the piezoelectric
mode function. The coupling is reduced by the admix-
tures of the qubit’s states {|0〉 , |1〉} with the localized
singlet κn = 〈n|S02〉. Again, for Ω ≈ ωc and gα � ωc,
we recover the prototypical Jaynes-Cummings dynam-
ics. Moreover, the spin-resonator Hamiltonian given in
Eq.(S37) belongs to the general class of Hamiltonians de-
fined in Eq.(1).

Hot gate.—For such a spin qubit a spin-resonator cou-
pling strength of gsp/2π ≡ gx/2π = (g0/2π)κ0κ1 ≈
3.2MHz (gz/2π ≈ 0.64MHz) has been predicted for typ-
ical parameters in GaAs [S3]. For a typical resonator
frequency ωc/2π ≈ 1.5GHz, this amounts to a relative
coupling strength µsp = gsp/ωc ≈ 0.2% and an effec-
tive coupling geff/2π = µspgsp/2π ≈ 65kHz, which could
be increased substantially by additionally depositing a
strongly piezoelectric material such as LiNbO3 or ZnO
on the GaAs substrate [S3, S4, S10]. The condition
ωc � Ω can be satisfied by choosing the magnetic gradi-
ent ∆ between the dots appropriately, ∆ . 0.1µeV. Re-
cently, SAW resonators with quality-factors approaching
∼ 106 have been realized experimentally [S11]. Then,
taking an optimistic quality-factor of Q = 106, accord-
ing to the hot-gate requirement kBT � Q× geff , we find
T � 3.1K; therefore, for spin qubits coupled to high-
quality SAW-resonators, our scheme can tolerate temper-
atures approaching the Kelvin regime, where the thermal
occupation number is much larger than one. For exam-
ple, for ωc/2π ≈ (1.0− 1.5) GHz and T ≈ 0.5K, we have
n̄th ≈ 6.5 − 10. The second requirement for small er-
rors, Γ � geff , yields Γ/2π � 65kHz, which may be
satisfied in GaAs with recently demonstrated echo tech-
niques, where decoherence timescales T2 ≈ 1ms have
been demonstrated [S12]. Finally, with n̄th/Q ≈ 10/106

and Γ/ωc ≈ 1kHz/1.5GHz, and using the relation ξ ≈
ακ (κ/ωc) n̄th +αΓΓ/ωc, we can estimate the overall gate
error as ξ ≈ 4 × 10−5 + 2.5 × 10−2 ≈ 2.5%, which is
largely limited by dephasing-induced errors (for the pa-
rameters chosen here). Again, to counteract this source
of error, a strongly piezoelectric material such as LiNbO3

may be used on the GaAs substrate. Alternatively, one
could also investigate silicon quantum dots: while this
setup also requires a more sophisticated heterostructure
including some piezoelectric layer, it should benefit from
prolonged dephasing times T ?2 > 100µs [S13], which is
not longer than the dephasing time T2 quoted above for
GaAs, but relaxes the need for dynamical decoupling.
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Figure S2: (color online). Fidelity F for the two-qubit state
ρqubits with the target state |Ψtar〉 = (|⇑⇓〉+ i |⇓⇑〉) /

√
2 for

Γ/ωc = 0 (blue solid line) and Γ/ωc = 1% (red dashed line).
For sufficiently low noise, at ωct = 2π and ωct = 5 × 2π the
fidelity with the maximally entangled state |Ψtar〉 reaches the
maximal value F = 1. Numerical parameters: ωq/ωc = 0,
kBT/ωc = 2 (n̄th ≈ 1.54), g/ωc = 1/4, κ/ωc = Q−1 = 10−5.

VIII. ADDITIONAL NUMERICAL RESULTS

Here, we provide further detailed results based on the
numerical simulation of the master equation given in
Eq.(8). Just as in the main text, for all simulations shown
below the initial state of the spin-resonator system has
been chosen as ρ (0) = |⇑⇓〉 〈⇑⇓|⊗ρth (T ), with the cavity
mode in the thermal state ρth (T ) = Z−1 exp

[
−βωca†a

]
.

Periodic recurrences.—First, as displayed in Fig.S2,
we observe periodic recurrences of the maximally-
entangling dynamics: For example, for g/ωc = 1/4
(as used in Fig.S2), ideally—apart from F = 1 at
(ωc/2π)t = 1—we find F = 1 again at (ωc/2π)t =
5, since Uxid (m = 5, 1/4) = exp [iπσx1σ

x
2 ]Uxid (1, 1/4) =

−Uxid (1, 1/4). This statement holds provided that de-
phasing is negligible on the relevant timescale; compare
the dashed curve in Fig.S2 which accounts for dephasing
of the qubits.

Non-zero level splitting.—While our analytical treat-
ment has assumed ωq = 0, in Fig.S3 we provide ex-
emplary numerical results that explicitly account for a
non-zero qubit level splitting ωq > 0, showing that the
proposed protocol can tolerate non-zero level splittings
of the qubits ωq/ωc . 0.1, without a severe reduction in
the fidelity of the protocol. Again, this numerical find-
ing is corroborated in Fig.S4. Here, it is shown explicitly
that a strong entanglement reduction is observed once
condition (9) is violated. Conversely, within the range of
parameter values satisfying Eq.(9), the results are rather
insensitive to the particular parameter values.

Rethermalization-induced errors.—As illustrated in
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Figure S3: (color online). Fidelity F = 〈Ψtar|ρqubits|Ψtar〉 for
the two-qubit state ρqubits = Trcav [ρ] with the target state
|Ψtar〉 = (|⇑⇓〉+ i |⇓⇑〉) /

√
2 for both ωq/ωc = 0 (solid blue

line) and ωq/ωc = 0.1 (dashed red line); here, g/ωc = 1/16 <
0.1. Other numerical parameters: kBT/ωc = 2 (n̄th ≈ 1.54),
Q = 105 and Γ/ωc = 0.
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Figure S4: (color online). Logarithmic negativity EN for
kBT/ωc = 1 and different cavity quality factors: Q = 105

(solid blue), Q = 102 (dash-dotted blue), and Q = 10
(dashed magenta). A clear reduction of the maximum en-
tanglement is observed, if the quality factor Q is too low to
satisfy the hot-gate requirement given in Eq.(9). Here, we
have g/ωc × g/kBT = 1/16 = 6.25× 10−2. The red (dotted)
curve refers to Q = 102 and ωq/ωc = 0.2. Other numerical
parameters: g/ωc = 1/4 and Γ/ωc = 0.

Fig.S5, we have numerically checked that (for small infi-
delities) the rethermalization induced error ξκ scales lin-
early with the effective rethermalization rate κeff = κn̄th.
Notably, as evidenced in Fig.S5, the error is found to be
independent of the spin-resonator coupling g. As demon-
strated in in Sec. IX, this numerical result can be cor-
roborated analytically within a perturbative framework.

Full error analysis.—Similar to Fig.4(c) in the main
text, in Fig.S6 we provide numerical results that fully
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Figure S5: (color online). Error as a function of the effective
rethermalization rate κn̄th for g/ωc = 1/16 (red squares),
g/ωc = 1/

(
8
√

2
)
(blue stars) and g/ωc = 1/8 (green trian-

gles) and kBT/ωc = 2 (n̄th ≈ 1.54), within the relevant small-
error regime (κeff/geff � 1). The dash-dotted lines in cyan
refer to linear fits, demonstrating a linear error scaling in the
small error-regime (κeff/geff � 1), which is independent of
µ = g/ωc. Accordingly, the error is larger for higher temper-
atures, but all temperature related effects are approximately
captured by the thermal occupation number n̄th. Other nu-
merical parameters: Γ = 0 and ωq = 0.
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Figure S6: (color online). Total error ξ as a function of both
the effective rethermalization rate ∼ κ/ωcn̄th ∼ n̄th/Q and
the spin dephasing rate ∼ Γ/ωc for g/ωc = 1/16, kBT/ωc = 4
and ωq = 0.

account for higher-order, correlated errors (beyond the
linear error approximation). Here, we have chosen a tem-
perature kBT/ωc = 4, a factor two larger than the one
used in Fig.4(c) in the main text. Still, if the rether-
malization induced error is scaled in terms of the effec-
tive decay rate κeff = κn̄th, we obtain (approximately)
the same total error ξ, independently of the temperature

kBT , showing that the effective decay rate κeff = κn̄th

captures well any temperature-related effects. This is ev-
idenced numerically in Fig.S6 which approximately coin-
cides with the results displayed in Fig.4(c) in the main
text and is line with our simple error estimate for rether-
malization induced errors; compare Eq.(11) in the main
text.

Timing errors.—Finally, we consider errors (infideli-
ties) due to limited timing accuracies. To do so, we
take the average fidelity of our protocol F̄ within a
certain timing window ∆t centered around the strobo-
scopic time tmax for which maximum fidelity (minimal
infidelity) is achieved; for example, in quantum dot sys-
tems timing accuracies ∆t of a few picoseconds have been
demonstrated experimentally [S14]. For g/2π = 10MHz
and ωc/2π = 160MHz (that is, µ = g/ωc = 1/16)
as used in the main text, the pulse time lies in the
microsecond regime (tmax = π/8geff ≈ 0.2µs), for which
∆t ≈ 1ps is feasible; for this relatively long pulse, the
relative time jitter is well below the percent level, i.e.,
(ωc/2π) ∆t ≈ 10−4. Based on our numerical simulations,
we make the following observations: (i) As demonstrated
in Fig.S7, we find an average error scaling linearly with
∼ n̄th, that is ξ̄ = 1−F̄ ∼ n̄th. (ii) More precisely, the er-
ror expressions given in the main text can be generalized
to

ξ̄ = ᾱκ
κ

ωc
n̄th + ᾱΓ

Γ

ωc
+ β̄κ + β̄Γ. (S40)

Here, the unit-less quantities ᾱγ , β̄κ for γ = κ,Γ depend
on the timing window ∆t. For example, for g/ωc = 1/16
and (ωc/2π) ∆t = 5%, we then extract ᾱκ ≈ 4.03,
β̄γ ≈ 2.2 × 10−4, ᾱΓ ≈ 24.22 and β̄Γ ≈ 5.1 × 10−4. (iii)
As shown in Fig.S7, for the experimentally most relevant
regime where (ωc/2π) ∆t� 1 (such that the timing win-
dow covers a small range of the oscillations only), this
error is found to decrease for a smaller spin-resonator
coupling strength g/ωc, because larger values of g/ωc
imply larger oscillation amplitudes within the relevant
range over which we have to average; compare the center
and right plots in Fig.S7. Therefore, for the experimen-
tally most relevant regime where (ωc/2π) ∆t � 1 and
g/ωc . 1/16, the effects of time jitter should be negligi-
ble.

IX. ANALYTICAL EXPRESSION FOR
RETHERMALIZATION-INDUCED ERRORS

In this Appendix we derive an analytical expression for
rethermalization-induced errors. In particular we show
that this expression is independent of the spin-resonator
coupling strength g.

Our analysis starts out from the master equation

ρ̇ = −i [H, ρ] +
∑
j=1,2

D [Lj ] ρ, (S41)
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Figure S7: (color online). Timing errors. Left: Total average error ξ̄ as a function of the thermal occupation number n̄th for
timing windows (ωc/2π) ∆t = 5% (circles) and (ωc/2π) ∆t = 10% (squares); here, g/ωc = 1/16 (red symbols) and g/ωc = 1/8
(blue symbols, upper curve). All curves can be fit very well to linear error models (see black dashed lines). Center: Set
of underlying (temperature-dependent) simulations for both g/ωc = 1/16 (terminating at ωct/2π = 16.5) and g/ωc = 1/8
(terminating at ωct/2π = 4.5). Note that larger amplitudes are observed for larger values of µ = g/ωc. Other numerical
parameters: Q = 105, Γ = 0 and ωq = 0. Right: Same analysis as done in Fig.S5 for g/ωc = 1/8 (triangles) and g/ωc = 1/16
(squares). The black curves account for a finite timing accuracy (ωc/2π) ∆t = 5%, showing that the detrimental effects of time
jitter are less pronounced for smaller values of µ = g/ωc.

where the Hamiltonian H = ωca
†a + gS ⊗

(
a+ a†

)
refers to the ideal (noise-free) dynamics and the jump-
operators L1 =

√
κ1a, L2 =

√
κ2a
† with κ1 = κ (n̄th + 1)

and κ2 = κn̄th describe rethermalization of the res-
onator mode with a rate κ = ωc/Q that is enhanced
by the thermal occupation number n̄th. It is convenient
to move to an interaction picture, defined by ρ̃ (t) =
exp [iHt] ρ (t) exp [−iHt]. In this interaction picture, the
system’s dynamics is described by

˙̃ρ =
∑
j=1,2

D
[
L̃j

]
ρ̃, (S42)

with time-dependent jump operators L̃j =
exp [iHt]Lj exp [−iHt]. Using the exact relation
exp [−iHt] = U exp

[
−iωcta†a

]
U†Usp (t), with the

polaron transformation U = exp
[
µS
(
a− a†

)]
and the

pure spin (entangling) gate Usp (t) = exp
[
iµ2ωctS2

]
,

the time-dependent jump operators L̃j take on a simple
form

L̃1 (τ) =
√
κ1

[
e−iωcτa+

(
e−iωcτ − 1

)
µS
]
,

L̃2 (τ) =
√
κ2

[
eiωcτa† +

(
eiωcτ − 1

)
µS
]
. (S43)

The formal solution to Eq.(S42) reads

ρ̃ (t) = ρ̃ (0) +
∑
j

ˆ t

0

dτD
[
L̃j (τ)

]
ρ̃ (τ) , (S44)

where in the interaction picture the zeroth-order solution
ρ̃0 (t) = ρ̃ (0) = ρ (0) stays inert, and accounts for the
ideal (noise-free) dynamics only in the lab frame, ρ0 (t) =
exp [−iHt] ρ̃0 (t) exp [iHt] = exp [−iHt] ρ (0) exp [iHt].
To obtain the first-order correction ρ̃1 (t) within a pertur-
bative framework, we re-insert the zeroth-order solution
into the dissipator of Eq.(S44), i.e. effectively we take
ρ̃ (τ)→ ρ (0), which yields ρ̃ (t) ≈ ρ (0) + ρ̃1 (t), with

ρ̃1 (t) =
∑
j

ˆ t

0

dτD
[
L̃j (τ)

]
ρ (0) . (S45)

Inserting the expressions given in Eq.(S43)
into Eq.(S45) and performing the integration,
with

´ t
0
dτ
∣∣1− e±iωcτ ∣∣2 = 2(t − sin(ωct)

ωc
) and´ t

0
dτ
(
1− e±iωcτ

)
= t± i e±iωct−1

ωc
, one arrives at

ρ̃1 (t) = κ1tD [a] ρ (0) + κ2tD
[
a†
]
ρ (0) + 2 (κ1 + κ2)µ2

(
t− sin (ωct)

ωc

)
D [S] ρ (0)

+

[
κ1µ

(
t− ie

−iωct − 1

ωc

){
aρ (0)S − 1

2
{aS, ρ (0)}

}
+ h.c.

]
+

[
κ2µ

(
t+ i

eiωct − 1

ωc

){
a†ρ (0)S − 1

2

{
a†S, ρ (0)

}}
+ h.c.

]
. (S46)
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which, for stroboscopic times tm = 2πm/ωc (with m integer), simplifies to

ρ̃1 (tm) = κ1tmD [a] ρ (0) + κ2tmD
[
a†
]
ρ (0) + 2 (κ1 + κ2)µ2tmD [S] ρ (0)

+

[
κ1µtm

{
aρ (0)S − 1

2
{aS, ρ (0)}

}
+ h.c.

]
+

[
κ2µtm

{
a†ρ (0)S − 1

2

{
a†S, ρ (0)

}}
+ h.c.

]
.

Next, we perform a transformation back to the lab
frame, with ρ (t) = exp [−iHt] ρ̃ (t) exp [iHt]. As
discussed in the main text, for stroboscopic times
the ideal evolution simplifies to exp [−iHtm] =
exp

[
iµ22πmS2

]
= exp (−iφgp) exp

[
i4πmµ2σx1σ

x
2

]
. The

ideal (noise-free) evolution is given by ρid (tm) =
exp [−iHtm] ρ (0) exp [iHtm] = %id (tm) ⊗ ρth, where
%id (tm) = exp

[
i4πmµ2σx1σ

x
2

]
% (0) exp

[
−i4πmµ2σx1σ

x
2

]
is the ideal qubit’s state at time tm, starting from the
initial state ρ (0) = % (0) ⊗ ρth. Then, the system’s den-
sity matrix at time tm is approximately given by

ρ (tm) = ρid (tm) + κ1tmD [a] ρid (tm)

+κ2tmD
[
a†
]
ρid (tm)

+2 (κ1 + κ2)µ2tmD [S] ρid (tm)

+

[
κ1µtm

{
aρid (tm)S − 1

2
{aS, ρid (tm)}

}
+κ2µtm

{
a†ρ (0)S − 1

2

{
a†S, ρ (0)

}}
+ h.c.

]
.

Note that, in the limit κi → 0, one retrieves the ideal
result ρ (tm) = ρid (tm). Next, we trace out the resonator
mode. Assuming the state of the resonator mode to be
diagonal in the occupation number basis (in particular,
this holds for a thermal state ρth), none of the cross-terms
contribute to the partial trace, and for stroboscopic times
tm the state of the qubits is given by

% (tm) = %id (tm) + 2κ (2n̄th + 1) tmµ
2D [S] %id (tm) .

(S47)
As expected naïvely, the error term scales with ∼ κn̄thtm,
but is is further reduced by the factor µ2 = (g/ωc)

2.
Eq.(S47) holds for stroboscopic times tm = 2πm/ωc,
with m integer. If mµ2 = 1/16, the ideal evolu-
tion exp [−iHtm] = exp (−iφgp) exp

[
iπ4σ

x
1σ

x
2

]
equals a

maximally-entangling gate, which (for an initial pure
state like |Ψ〉0 = |⇓⇓〉) yields the desired ideal qubit
target state |Ψtar〉 = exp

[
iπ4σ

x
1σ

x
2

]
|Ψ〉0. Then, in the

presence of noise, at the nominally ideal time tmax =
π/8µ2ωc = π/8geff the qubit’s density matrix reads

% (tmax) = |Ψtar〉 〈Ψtar| (S48)

+
π

4

κ

ωc
(2n̄th + 1)D [S] |Ψtar〉 〈Ψtar| .

Therefore, to first order rethermalization-induced noise
leads to dephasing dynamics in the eigenbasis of S with
a single such phase flip. Since neither the desired tar-
get state |Ψtar〉 not the initial state |Ψ〉0 is an eigen-
state of S, the system looses fidelity with a probability
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Figure S8: (color online). Fidelity F close to the ideal time
tmax for g/ωc = 1/16. The different curves refer to Q = 105,
kBT/ωc = 2, i.e. n̄th ≈ 1.54, (blue solid, top curve), Q =
105, kBT/ωc = 4, i.e. n̄th ≈ 3.52, (red solid) and Q = 104,
kBT/ωc = 4 (red dash-dotted). The error ξ = 1 − F can
be estimated well with the formula ξk ≈ 4n̄th/Q, giving (for
example) F ≈ 1 − 4 × 3.52/104 ≈ 0.9986. Other numerical
parameters: Γ = 0 and ωq = 0.

π
4
κ
ωc

(2n̄th + 1); notably, this expression is independent
of the spin-resonator coupling strength g.

For the fidelity with the maximally entangled target
state, we then obtain

F = 〈Ψtar|% (tmax) |Ψtar〉 = 1− π

2

κ

ωc
(2n̄th + 1) , (S49)

with a thermalization-induced error term given by

ξκ = π (κ/ωc) n̄th +
π

2
Q−1. (S50)

This analytical result is in good agreement with our
numerical findings (from which we have deduced ξκ ≈
ακ (κ/ωc) n̄th, with ακ ≈ 4), showing (i) a linear scal-
ing with the effective rethermalization rate ∼ κn̄th, (ii)
with a pre-factor ακ = π (close to ∼ 4) that is indepen-
dent of the spin-resonator coupling strength g and (iii)
a constant offset ∼ Q−1 which is negligible for realistic
quality factors Q ≈ 105 − 106. The latter is due to pho-
ton/phonon emission with a rate ∼ κ = ωc/Q at T → 0.
As illustrated further in Fig.S8 with a close-up of the fi-
delity F (t) around the optimal point tmax, the error ξκ
can be estimated well with this simple formula, where all
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temperature related effects are captured by the simple
linear expression in the thermal occupation number n̄th.

X. ANALYTICAL MODEL FOR
DEPHASING-INDUCED ERRORS

In this Appendix we provide an analytical model for
dephasing-induced errors. Neglecting rethermalization-
induced errors for the moment, here we consider the fol-
lowing master equation

ρ̇ = −i [Hid, ρ]︸ ︷︷ ︸
L0ρ

+ γφ [D [σz1 ] ρ+D [σz2 ] ρ]︸ ︷︷ ︸
L1ρ

, (S51)

where Hid = ωca
†a + g (σz1 + σz2) ⊗

(
a+ a†

)
describes

the ideal (error-free), coherent evolution for longitudi-
nal coupling between the qubits and the resonator mode,
and γφ is the pure dephasing rate. Since the superoper-
ators L0 and L1 as defined in Eq.(S51) commute, that
is [L0,L1] = 0 (since [Hid,D [σzi ]X] = D [σzi ] [Hid, X] for
any operator X), the full evolution simplifies to

ρ (t) = eL1teL0tρ (0) = eL1tρid (t) , (S52)

where we have defined the ideal target state at time t as
ρid (t) = exp [L0t] ρ (0), which, starting from the initial
state ρ (0), exclusively accounts for the ideal (error-free),
coherent evolution. For small infidelities (γφt� 1), the
deviation from the ideal dynamics ∆ρ = ρ − ρid is ap-
proximately given by

∆ρ (t) ≈ γφt
∑
i

D [σzi ] ρid (t) , (S53)

showing that (in the regime of interest where γφt � 1)
the dominant dephasing induced errors are linearly pro-
portional to ∼ γφtg ∼ γφ/geff = γφ/µ

2ωc, as expected;
here, tg ∼ geff is the relevant gate time which has to be
short compared to γ−1

φ .
In what follows, for completeness we derive the same

result within a quantum jump approach. Eq.(S51) can
be rewritten as

ρ̇ = −iHρ+ iρH† + J ρ, (S54)

where H = Hid−iγφ and J ρ = γφ
∑
i σ

z
i ρσ

z
i . The formal

solution to Eq.(S54) reads

ρ (t) = e−iHtρ (0) eiH
†t+

ˆ t

0

dτe−iH(t−τ)J ρ (τ) eiH
†(t−τ).

(S55)
Defining the ideal target state at time t as

ρid (t) = e−iHid(t−τ)ρ (τ) eiHid(t−τ), (S56)

the exact solution given in Eq.(S55) can be iterated, giv-
ing an illustrative expansion in terms of the jumps J . It

reads

ρ (t) = U (t) ρ (0) +

ˆ t

0

dτ1U (t− τ1)JU (τ1) ρ (0)

+

ˆ t

0

dτ2

ˆ τ2

0

dτ1U (t− τ2)JU (τ2 − τ1)×

JU (τ1) ρ (0) + . . .

Here, the n-th order term comprises n jumps J with free
evolution U (t) ρ = e−iHtρeiH

†t between the jumps. Up
to second order in J we then find

ρ (t) = U (t) ρ (0) + e−2γφtγφt
∑
i

σzi ρid (t)σzi (S57)

+
1

2
e−2γφtγ2

φt
2
∑
i,j

σzi σ
z
j ρid (t)σzjσ

z
i + . . .

For the regime of interest where γφt� 1, we then obtain
again the result given in Eq.(S53), where the dominant
error term scales linearly with ∼ γφt.

XI. AVERAGE GATE FIDELITY

The average gate fidelity F̄ is a useful measure in or-
der to quantify how well the completely-positive, trace-
preserving quantum operation M (in the presence of
noise) approximates a given unitary gate Uid, which rep-
resents the ideal (noise-free) evolution. Formally, it is
defined as

F̄ =

ˆ
dψ 〈ψ|U†idM (|ψ〉 〈ψ|)Uid |ψ〉 , (S58)

where the integral runs over the uniform (Haar) measure
dψ on state space, with

´
dψ = 1 [S15]. As shown in

Ref.[S15], F̄ may be re-expressed as

F̄ =
dFent + 1

d+ 1
, (S59)

where d is the dimension of the Hilbert space (d = 4
for two qubits) and the entanglement fidelity Fent is the
fidelity of the state obtained when M acts on one half
of a maximally entangled state with the state obtained
from the action of the ideal evolution; it is given by

Fent =
1

d3

∑
P∈G

tr
[
P †U†idM (P )Uid

]
. (S60)

Here, G is a set of d × d unitary operators, forming a
basis for a qudit, i.e., tr

[
P †j Pk

]
= δjkd, j, k = 1, . . . , d2.

For two qubits we may take the set of Pauli matrices
modulo phase, comprising in total 16 operators G ={
1, σαi , σ

α
1 σ

β
2

}
, with i = 1, 2, α = x, y, z. Experimen-

tally, F̄ may be determined using standard state tomog-
raphy [S15].
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Figure S9: (color online). Total average gate error Ē (in per-
cent) as a function of both the effective rethermalization rate
∼ κ/ωcn̄th ∼ n̄th/Q and the spin dephasing rate ∼ Γ/ωc for
g/ωc = 1/4 (top) and g/ωc = 1/8 (bottom). Other numerical
parameters: kBT/ωc = 2 and ωq = 0.

Errors.—The average gate error (infidelity) is defined
as Ē = 1 − F̄ . As follows directly from Eq.(S59), it is
related to the entanglement infidelity Eent = 1 − Fent

via Ē = d/ (d+ 1) × Eent; thus, for two qubits Ē =
(4/5)Eent.

Numerical results.—Numerical results for the aver-
age gate error Ē are presented in Fig.S9. Here,
the map M (P ) is given implicitly as M (P ) =
tra
[
eLtmaxP ⊗ ρth

]
, where the superoperator L• =

−i [H, •] + Lnoise• is the Liouvillian associated with the

master equation given in Eq.(8) in the main text, which
includes undesired processes due to rethermalization of
the cavity mode and dephasing of the spins. Broadly
speaking, our numerical results for the (average) gate er-
ror Ē are comparable to the ones obtained for the state
infidelity ξ = 1−F , as discussed in the main text. First,
comparison of our results for g/ωc = 1/4 and g/ωc = 1/8
shows that rethermalization-induced errors are approxi-
mately independent of the spin-resonator coupling g; for
example, for Γ = 0 and κ/ωcn̄th = 2.5 × 10−3 we find
Ēκ ≈ 0.82% for both g/ωc = 1/4 and g/ωc = 1/8, re-
spectively. Second, as expected, the dephasing induced
error scales as ĒΓ ∼ 1/g2 ∼ 1/µ2; for example, as
shown in Fig.S9, for κ = 0 and Γ/ωc = 1.5 × 10−3, we
find ĒΓ ≈ 0.376% and ĒΓ ≈ 1.49% ≈ 4 × 0.376% for
g/ωc = 1/4 and g/ωc = 1/8, respectively.
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