clease a transmembrane protein called Notch, releasing a fragment that activates the transcription of genes involved in cell-fate determination11. But it has been difficult to identify the protein(s) responsible for \( \gamma \)-secretase activity. Part of the difficulty was finding a protein-cleaving enzyme that cuts its targets within a transmembrane domain.

It was discovered in 1995 that a missense mutation (one that results in the insertion of an incorrect amino acid) in a previously unknown protein can lead to an early-onset form of familial Alzheimer’s disease7. This protein was named presenilin. Since then, a great deal of effort has been devoted to trying to understand how the normal and mutant presenilin proteins can lead to Alzheimer’s disease2. For example, the presenilin mutants that predispose people to Alzheimer’s disease result in APP being cleaved more frequently in a different place to normal, producing a slightly longer and more toxic form of A\( \beta \).

It now seems likely that presenilin is behind the elusive \( \gamma \)-secretase activity7–9. The data are compelling, but some doubts linger. First, the relative molecular mass of the purified cellular extract that has \( \gamma \)-secretase activity is higher than that of presenilin. And no one has yet been able to show that purified presenilin alone has \( \gamma \)-secretase activity. So, presenilin may not be working alone.

The discovery of nicastrin by Yu et al.7–9 confirms this supposition. The authors approached the problem of identifying other proteins that may be involved in the \( \gamma \)-secretase activity by purifying large amounts of presenilin from a particular human cell type. They then isolated the proteins that, because they bind to presenilin, were also found in the purified extracts. Two of these proteins were \( \alpha \)-catenin and \( \beta \)-catenin, which were already known to bind to presenilin but do not seem to have a role in APP processing. The third protein was a new transmembrane protein of unknown function. Further analysis revealed that this protein, now called nicastrin, binds to both presenilin proteins (presenilins 1 and 2) and interacts with the APP carboxy-terminal ‘stub’ — the fragment of APP that is produced by the initial, \( \beta \)-secretase-mediated cleavage (Fig. 1). Mutations that alter this interaction also alter the overall processing activity of \( \gamma \)-secretase, either positively or negatively.

To find out whether nicastrin is required for Notch processing, too, Yu et al. knocked out the function of nicastrin in the nematode worm Caenorhabditis elegans. They found that the offspring of these worms had the same characteristics as those in which the activity of genes in the Notch signalling pathway is reduced. It seems that nicastrin is probably required for \( \gamma \)-secretase activity in this processing reaction as well.

So, presenilin and nicastrin probably form a functional complex involved in the development of Alzheimer’s disease. How might these proteins work together? One possibility (Fig. 1) is that nicastrin binds to the APP stub and aligns it in the correct way relative to presenilin, so that it can be cleaved at just the right position. This would suggest that nicastrin controls the specificity of cleavage but lacks the active site. Another possibility is that nicastrin regulates the cleavage activity, in which case changes in presenilin or nicastrin might independently, or together, have allosteric effects on overall \( \gamma \)-secretase activity and APP turnover. Either way, compounds that interact with either nicastrin or presenilins should effectively alter \( \gamma \)-secretase activity. Indeed, compounds that interact with the presenilins in this way have already been identified10. Such compounds might, in the future, be useful in slowing down the progression of Alzheimer’s disease.

Does the \( \gamma \)-secretase complex contain other proteins, too? And, on a more fundamental level, is this complex involved in processing and perhaps getting rid of other transmembrane proteins? Such a role would be analogous to that of the ‘proteasome,’ a cellular protein-cleaving machine that processes some cytoplasmic proteins to their active form, and completely degrades faulty or unneeded cytoplasmic proteins. If the \( \gamma \)-secretase complex transmembrae protein complexes in the same way, a more apt name for it might be ‘secretosome’ (as suggested by Yu et al.; this name would reflect the activity’s role in generating secreted peptides such as A\( \beta \)) or ‘membrasome.’ It seems that the production of the ill-fated A\( \beta \) peptide has led to a far greater understanding of what might — for proteins such as Notch — be a normal cellular process. It is tragic indeed that this process might also contribute to Alzheimer’s disease in our old age.

Dale Schenk is at Elan Pharmaceuticals, 800 Gateway Boulevard, South San Francisco, California 94080, USA.

e-mail: Dschenk@elanpharma.com

References


Nanotechnology

Bouncing a C\( _{60} \) ball

Leo Kouwenhoven

Bouncing balls fascinate not only soccer and basketball fans, but also some nanoscientists. On page 57 of this issue, Park et al. describe the bouncing of the smallest possible soccer ball, a C\( _{60} \) molecule with a diameter of 0.7 nanometres. Like all classic soccer balls, a C\( _{60} \) molecule consists of 12 pentagons surrounded in total by 20 hexagons7. Regardless of the ball’s size, the spherical geometry always has the same number of pentagons and hexagons.

Many chemical, electronic and physical properties of C\( _{60} \) have been studied in the 15 years since its discovery2. The experiment by Park et al. adds mechanical properties to this list. They do with C\( _{60} \) what others do with a ball, bouncing it up and down on a surface. Controlling the motion of nanoscale objects is an important issue in the field of nanotechnology. Whereas in the macroscopic world the transfer of energy from a bouncing tennis ball to a surface is negligible, on the nanometre scale the energy of mobile electrons in the material cannot be ignored. In nanoscale objects, the coupling of electronic and mechanical behaviour can be enough to get a molecule moving, despite the much heavier mass of the molecule compared with the mass of the electron.

The mechanical control of nanoscale objects will mean smaller, faster and more efficient versions of existing micro-electro-mechanical structures (MEMS), an example of which is the accelerometer that triggers airbags in vehicles. A good example of research into nano-electromechanical structures (NEMS) is provided by Schwab et al., who made nanoscale bridges out of silicon that can transport heat through specific atomic vibrations. The approach taken by Park et al. is to use the natural motion of molecules that are loosely bound to a gold surface.

Park and colleagues have succeeded on two counts. First, they have created a three-electrode transistor from a single C\( _{60} \) molecule. As in ordinary silicon field-effect transistors, the voltage on a ‘gate’ electrode controls the current flowing from the ‘source’ electrode through the C\( _{60} \) molecule to the ‘drain’ electrode (Fig. 1a, overleaf). In fact, this is the smallest field-effect transistor ever built. The small size of C\( _{60} \) allows only one electron at a time to hop, or tunnel, on and off the molecule. This means that the device is a so-called single-electron transistor. Second, the single-electron current can both excite and detect the mechanical oscillations of the C\( _{60} \) ball. To understand this electro-mechanical
coupling we need to consider the energies that are involved in the different tunnelling processes (Fig. 1b).

To hop on the molecule, an electron has to have the correct energy to occupy a discrete molecular state. Too little energy leads to the electron being reflected, in which case it will not contribute to the current. If the electron has precisely the right amount of energy to occupy the lowest unoccupied molecular state, it can hop on and off, giving rise to electrical current. Too much energy usually also leads to reflection. But in quantum mechanics there exists an extra process by which an electron can tunnel across the molecule, owing to the unavoidable existence of fluctuations even at zero temperature. If the electron has a surplus energy precisely equal to the vibrational energy of C_{60} then by spontaneous emission of this surplus energy, which starts the C_{60} ball bouncing, it can still hop on and off the molecule. In Park and co-workers’ C_{60} device, the applied voltage controls the surplus electron energy. So a sudden current rise at a particular voltage indicates that the C_{60} ball is being made to oscillate.

When bouncing a ball on the ground with your hands, the amplitude and frequency of the bounces are determined mostly by the elasticity of the ball and the forces from gravity and your hands. A similar situation is experienced by the C_{60} ball. The force that makes the molecule stick to the surface of the gold electrodes is the van der Waals interaction. This sticking is not completely rigid. Electrons hopping on the C_{60} ball play the role of the hands, bringing the molecule into motion. But the bounces occur only at particular frequencies, owing to the quantization imposed by quantum mechanics. When the shape of the C_{60} ball does not deform, the bouncing frequency is about 1 terahertz. If the electrons hit the ball with more energy thereby denting the shape, the bouncing occurs about ten times faster. Park et al. found evidence for both types of motion.

In basketball, for regular bounces, the motion of the hands needs to be in phase with the ball’s motion. The new experiment by Park et al. does not measure or control the phase between the motions of the electrons and the C_{60} molecule. But it has been predicted that, under specific circumstances, every time the C_{60} ball is close to the source electrode an electron might hop on, and when it reaches the drain electrode it would hop off. If during each cycle of the C_{60} oscillation an electron is transferred across, then, because the frequency of the C_{60} bounces is quantized, the electric current also becomes quantized. Electronic devices in which the electro-mechanical motion is strictly coupled in this way could function as ‘electron turnstiles’ that allow electrons to pass one after the other in an ordered sequence. These ‘electron turnstiles’ have been built using quantum-mechanical effects to control the tunneling of electrons through metal junctions. This principle has been used to build electronic devices with atomic precision.

In this new experiment, the C_{60} ball is a turnstile that allows electrons to pass one after the other in an ordered sequence. The C_{60} ball is a turnstile that allows electrons to pass one after the other in an ordered sequence. The C_{60} ball is a turnstile that allows electrons to pass one after the other in an ordered sequence.