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We have studied the electron transport through zero-dimensional (OD) states. OD states are formed when one-dimensional edge chan- 

nels are confined in a quantum dot. The quantum dot is defined in a two-dimensional electron gas with a split gate technique. To allow 

electronic transport, connection to the dot is arranged via two quantum point contacts, which have adjustable selective transmission 

properties for edge channels. The OD states show up as pronounced oscillations in the conductance (up to 40% of e*/h), when the flux 

enclosed by the confined edge channel is varied, either by changing the magnetic field or the gate voltage. A prerequisite for the appear- 

ance of OD states is that the transport through the entire device is adiabatic (i.e. with conservation ofquantum numbers), which will be 

shown to occur at high magnetic field. The experimental results are in good agreement with theory and show that in the ballistic quantum 

Hall regime the current is carried entirely by edge channels. 

1. Introduction 

Advancing technology has made it possible to study 
the transport properties of a two-dimensional elec- 
tron gas (2DEG) in the ballistic regime, for which 
the device dimensions must be much smaller than 
the elastic mean free path. One of the results is the 
observation of the quantum Hall effect (QHE) in 
ballistic submicron structures [ 11. This observation 
shows that localized states cannot be a prerequisite 
for the appearance of quantized Hall plateaus. An 
alternative approach to explain the QHE is based on 
the formation of edge channels when a high mag- 
netic field is applied perpendicular to the 2DEG [ 21. 
The description of the QHE can then be given within 
the Landauer-Btittiker formalism for electron trans- 
port [ 31. Besides their importance for explaining the 
QHE, edge channels have some fundamental prop- 
erties which are interesting for further study. The 
electron transport in edge channels is one-dimen- 
sional [ 2 ] and scattering between different channels 
can be extremely small [ 4,s 1. 
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Another interesting result of studying ballistic 

transport is the discovery of the quantized conduc- 
tance of short narrow wires or quantum point con- 

tacts (QPCs) at zero magnetic field. The conduc- 
tance of QPCs is quantized at multiple values of 2e2/ 
h, due to the formation of one-dimensional ( 1D) 
subbands in the constriction [ 6,7]. It was shown that 
in high magnetic fields QPCs can be used as selective 
transmitters of edge channels [ 81. Edge channels with 
different Landau level index can either be transmit- 
ted or reflected by a QPC. This enables one to study 
transport occurring in a selected edge channel, by se- 
lective current population or voltage detection of a 
particular edge channel [ 8 1. 

We have employed the properties of edge channels 
and QPCs for the construction of a 1 D electron in- 
terferometer, in which discrete zero-dimensional 
(OD) states are observed [ 9 1. The reduction to zero 
dimensions is obtained by confining a 1 D edge chan- 
nel in a quantum dot between two partially trans- 
parent barriers. The transparency of the barriers al- 
lows a coupling to the OD states for electronic 
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transport measurements. The OD states show up as 
pronounced oscillations in the conductance with 
maxima occurring whenever the energy of a OD state 
coincides with the Fermi energy. Electron transfer 
then takes place through resonant transmission. The 
experimental results are in good agreement with the- 
ory and confirm the Landauer-Biittiker description 
of confined electron transport in a quantizing mag- 
netic field. 

2. Device description 

Fig. 1 shows the schematic layout of our device. A 
Hall-bar is defined in the 2DEG of a high mobility 
GaAs/AlGaAs heterostructure. The 2DEG has a 
transport mean free path of 9 pm and an electron 
density of 2.3x lOi m-‘. On top of the heteros- 
tructure two pairs A and B of metallic gates are fab- 

ricated by standard optical and electron beam lith- 
ographic techniques. A negative voltage of -0.2 V 
on both gate pairs depletes the electron gas under- 
neath the gates and creates a quantum dot with a di- 
ameter of 1.5 pm in the 2DEG. The narrow channel 

Fig. I. Schematic layout of the quantum dot with diameter of 1.5 
pm and two 300 nm wide quantum point contacts. The electron 

flow in edge channels is shown when a high magnetic field B is 

applied. (a) illustrates adiabatic transport for unequal QPCs A 

and B. (b) A 1D loop is formed when an edge channel is only 

partially transmitted by both QPCs. 

separating the gate pairs is already pinched off at this 
gate voltage. To allow electronic transport, connec- 
tion from the wide 2DEG regions to the dot is ar- 
ranged by two 300 nm wide QPCs. The transport 
properties of each individual QPC can be studied by 
applying the gate voltage to only one gate pair and 
zero voltage to the other. The electrostatic potential 
landscape at the QPC resembles a saddled shaped 
barrier. The height of the barrier EB can be increased 
by reducing the gate voltage until the QPC is pinched 
off at - 1 V. 

3. Edge channels and selective transmission of 
QPCs 

In this section we describe the main properties of 
edge channels and the selective transmission of them 
by QPCs. In a high magnetic field the energy of the 
electrons is given by 

E,=(n-;)fio,kjgp,B+ eV(x,y) , (1) 

with y1 the Landau level index, gp,B the spin split- 
ting, and V(x,y) the electrostatic potential, which will 
be nominally flat in the interior of the sample and 
rising at the boundary (see fig. 2 ). Electrostatic vari- 
ations due to impurities are ignored because we are 
dealing with ballistic samples. The electron states at 
the left hand side of the sample are occupied to ,u,, 
the electrochemical potential of the current source, 
and their velocity direction is perpendicular to the 
cross-section of fig. 2. At the right hand side the elec- 
tron states are filled up to p2, the electrochemical po- 
tential of the current drain and their velocity is in 
opposite direction. The difference in occupation 
e V= ,u, - ,u2 (determined by the voltage V between 

Fig. 2. Occupied electron states (bold) in Landau levels in the 

presence of a current flow, illustrating the formation of edge 

channels at the 2DEG boundary potential V(x,y) where the Lan- 

dau levels intersect the Fermi energy E,. 
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current source and drain) between the two edges re- 
sults in a net current flowing along the boundary of 

the sample. It can be shown [2] that the transport 
in edge channels is one-dimensional. From the well- 
known cancellation of density of states with velocity 

in one dimension it follows that the net current in 
each (spin split) Landau level is given by I= 
(e/h) (put - p2)_ The location of the current-carting 
electron states elucidates the name of edge channels. 
The ratio current/voltage yields the quantized con- 
ductance e2/h contributed by each occupied Landau 

level. 
Although the above model is obviously highly sim- 

plified, it leads to some important features of trans- 
port in a high magnetic field, Biittiker [ lo] has 
pointed out that backscattering involves scattering 
between the opposite sample edges, which is sup- 
pressed when the cu~ent-carting electrons with 
energies between pi and .u2 are not connected to the 
other boundary through available electron states. This 
is the case when the Fermi energy is between two bulk 
Landau levels (see fig. 2 ). Experimentally it was also 
shown that forward scattering between different edge 
channels at the same sample boundary is surpris- 
ingly low, even over macroscopic distances much 
larger than the zero field mean free path [ 4,5 1. This 
means that the transport in edge channels is pri- 
marily adiabatic, i.e. with conservation of quantum 
index IZ. The fact that the transport in edge channels 
is adiabatic justifies they are being viewed as inde- 
pendent ID current channels. 

The relevant electron states for transport are only 
those at the Fermi energy -E_F. The spatial location of 
the current-caning electrons result from the con- 
dition E,= E,, yielding: 

eV(x,~‘)=E,=E,-(n_5)tiw,_tfgl*sB. (2) 

EG is known as the guiding energy [ 111. Eq. (2 ) im- 
plies that edge channels with different Landau level 
index n or opposite spin direction, while all located 
at the sample boundary, follow different equipoten- 
tial lines. 

Using their controllable barrier height E,, QPCs 
can be used as selective edge channel transmitters. 
Those edge channels for which &-=zE, will be re- 
flected by a QPC and those with EC > EB can pass 
through the QPC. Because only the transmitted edge 

channels contribute, the two-terminal conductance 
G of a single QPC is given by: 

G=$N+ T) . (3) 

Here N denotes the number of fully transmitted 
channels and T the partial transmission of the upper 
edge channel. From EB=EBf V,) and E,=&(B), it 
follows that the number of transmitted channels can 
be changed by varying the magnetic field or the gate 
voltage. Conductance quantization occurs in those 
intervals for B and l;p where T=O. From experi- 
ments [ 5,8] we know that eq. ( 3) holds very well, 
meaning that QPCs fully transmit the lower indexed 
edge channels (which follow higher equipotential 
lines, see eq. (2 ) ) and partially transmit the upper 
channel without inducing scattering between the 
available (bulk) edge channels. 

4. Adiabatic transport in series QPCs 

When two QPCs are placed in series the question 

arises whether the series resistance in the ballistic 
transport regime is just the Ohmic addition of the 
individual QPC resistances [ 121. We have studied 
this for the geometry of fig. 1, where the two QPCs 
are connected by a cavity. At zero magnetic field the 
incoming electrons will scatter randomly in the cav- 
ity and establish a more or less isotropic velocity dis- 
tribution. In this way the cavity acts as a reservoir 
and the series resistance is just the Ohmic addition 
of the individual QPC resistances. This situation 
changes at a high magnetic field when the electron 
motion is confined to edge channels. If no scattering 
occurs between different channels the transport is 
adiabatic. The QPC with the highest barrier and 
consequently with the lowest number of transmitted 
channels will form the “bottleneck” for the total sys- 
tem. Those channels which can pass the highest bar- 
rier in the circuit can also pass the other barriers (see 
fig. la). The series conductance Gb then is com- 
pletely determined by the smallest of the two con- 
ductances of the individual QPCs: CD= min (G,,G, ), 
where G, and Gs are given by eq. (3 ). 

If both QPCs transmit the same number of chan- 
nels N and the upper edge channel is only partially 
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transmitted (see fig. 1 b), the series conductance Gp 
is given by 

The partial transmission TD of the upper edge chan- 
nel through the complete device can easily be cal- 
culated from the transmissions T, and TB of the in- 
dividual QPCs. Ignoring interference effects which 
will be considered in the next section, an incoming 
electron will be directly transmitted through both 
QPCs with probability TAT,. After making one loop 
around the dot, the next probability to be transmit- 
ted is TARBRAT* (with R= 1 - T). A second loop 
gives T, ( RsRA )’ T,, etc. Summing all contributions 
yields for the total transmission probability 

T,=T,T, [l+RARB+(RARB)* +...I 

TA T, 
= 1 -RARB . (5) 

Eq. (5 ) is the classical result for the transmission of 
a single channel through two barriers. 

In ref. [ 13 ] a detailed study is described on the 
transition from Ohmic transport (at B= 0 T) to adi- 
abatic transport (at B= 1 T) in series QPCs. The 
measurements at B= 1 T and at a temperature of 0.6 

K (so interference effects are averaged out) are 
shown in fig. 3. The conductances GA and G, mea- 
sured with zero voltage applied to the other gate pair, 
show (spin degenerate) plateaus at integer multiples 
of 2e*/h. The series conductance G,, plotted in fig. 
3a is measured with equal voltage applied to both 
gate pairs. Gp also shows quantized plateaus when- 
ever both conductances G, and GB are quantized. 
The step height of 2e*/h indicates adiabatic trans- 
port through the series QPC device. Scattering be- 
tween different edge channels would yield smaller 
steps (which is observed for B< 1, see ref. [ 131). 
The transition regions between the plateaus are in 
good agreement with a calculation from eq. (5 ) (not 
shown here). A further test if adiabatic transport 
takes place is shown in fig. 3b. In this experiment the 
gate voltage Vg on pair A is fixed at -0.7 V and the 
voltage on gate pair B is varied. The series conduc- 
tance should now be equal to G,=4e2/h for 
I’,> -0.7 V and equal to G, for VP< -0.7 V. Com- 
paring fig. 3b with fig. 3a it can be seen that the se- 

-1 -0.E -0.6 -0.4 -0.2 
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Fig. 3. Conductances GA and G, of the individual QPCs and Go 

of the two QPCs in series illustrating adiabatic transport at B= 1 

T. (a) For equal voltage on both gate pairs A and B. (b) For 

fixed-0.7Von gate pair A andvarying the gate voltage on pair B. 

ries conductance is indeed in good agreement with 
Gp= min( GA,GB). We conclude that the transport 
through the series QPC device is adiabatic, whenever 
the transport through edge channels take place at a 
sufficiently high magnetic field. 

5. Transport through OD states 

5.1. Theory 

In the previous section we derived the classical 
transmission probability T, for a 1D double barrier 
structure. Here we give a simple quantum mechan- 
ical derivation for which the electron wave function 
must be taken as a starting point [ 141. Consider an 
incoming wave Yiui, from the left in the partial trans- 
mitted edge channel of fig. lb. The right- and left- 
moving waves YR and YL in the dot are mutually 
connected through: YR = JTA Yin +A !PL and 
YL = fi YR exp( io), when both are evaluated at 



QPC A. u denotes the acquired phase after making 

one revolution around the dot. With YOU,= 
$cyk for the outcoming wave at the right, the 

transmission probability T, = 1 You,] */ / Y’i”i2 is given 

by: 

T,= 
TA TB 

1-ZJR,R,cos o+R,Rn 
(6) 

Eq. (6) implies that the transmission T, and thus 

the conductance Gt, oscillate as a function of the 

phase factor u, whenever both barrier transmissions 

TA and T, differ from zero. v is determined by the 

enclosed flux: v= 2nBA/&,, where A denotes the area 

enclosed by the edge channel loop and &,=/r/e is the 

flux quantum. Whenever the enclosed flux @=RA 

equals an integer number of flux quanta the trans- 

mission T,, is resonant. The amplitude of the oscil- 

lations is determined by the barrier transmissions &, 

and TB. It follows from eq. (6) that for TA= TB the 

transmission at resonance gives T,= 1 and the con- 

ductance Gp then equals e2/h. For asymmetric 

transmissions T,# TB the maximum value of Tn is 

less than I. The minimum value of T, between two 

resonant states approaches zero for small barrier 

transmissions. Note that eq. (6) is exactly the for- 

mula for a 1 D interferometer. While in our case the 

phase is determined by the enclosed flux, eq. (6) also 

holds for a cavity inbetween two barriers, where the 

product of cavity length and longitudinal wave vec- 

tor determines the phase 0. 

The resonance results from the formation of OD 

states in the confined edge channel due to the small 

circumference of this ID loop. Resonant transmis- 

sion occurs whenever the Fermi energy EF coincides 

with a OD state. This becomes more clear for very 

weak coupling ( TA= T,x 0) to the quantum dot. 

Then the eigenstates of the dot are nearly undis- 

turbed and eq. (6) gives sharp Lorentzian-shaped 
peaks belonging to discrete OD-states. For TA= TB z 0 

the peak amplitude approaches 100% of e’/h. 

The above considerations are general for transport 
through OD states. Similar properties were deduced 
from numerical calculations on the transmission of 
small quantum boxes in which OD states are formed 
at zero magnetic field [ 15 1. Also, recent transport 
experiments have shown the formation of OD states 

due to electrostatic confinement in all three spatial 
dimensions [ 16 1. 

5.2. Experiment 

The two-te~inal conductance measurements pre- 
sented in this section are all performed at 6 mK. The 
conductance Gr, of the quantum dot shows quan- 
tized plateaus as a function of magnetic field with a 
fixed gate voltage on both gate pairs. The plateaus 
( T,= 0) indicate 1 D transport through the dot, while 

at the transitions between the plateaus (when I.,-, # 0) 
transport through OD states is expected. 

Fig. 4 shows the transition from the second to the 
third plateau, which corresponds with the complete 
transmission of the lowest two edge channels and the 
partial transmission of the third. In figs. 4a and 4b 

the conductances G, and GB of the single QPCs are 
plotted, measured with -0.35 V on the correspond- 
ing gate pair. The increasing magnetic field gradually 
reduces the transmissions T, and TB of the third edge 
channel from 1 to 0. The irregular structure can be 

2.4 25 2.6 2.7 

MAGNETIC FIELD IT) 

Fig. 4. Transition from the second to the third plateau of the QPC 

conductances G, (a) and GB (b) and of the dot CD (c). Large 
oscillations are seen in G, whenever both G, and GB are not 

quantized. A calculation of Go from eq. (6) with the measured 
G, and Gs is shown in (d); see text. 
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attributed to random interferences within the QPCs 
themselves [ 17 1. The conductance Gp of the dot is 
shown in fig. 4c, which is measured with Vg= -0.35 
V on both gate pairs. Large oscillations are seen in- 
between the plateau regions. The amplitude modu- 
lation of the oscillations is up to 40% ofe*/h. The 
fact that the oscillations do not exceed 3e2/h nor drop 
below 2e*/h indicates that the oscillations originate 
from the third edge channel only. The curve plotted 
in fig. 4d is calculated from eq. (6) with the mea- 
sured conductances G, and Gr,. We will discuss the 
comparison between theory and experiment in more 
detail below. 

Fig. 5a shows the oscillations on an expanded scale, 
and illustrates their regularity. The period B,, of the 
oscillations smoothly varies from B,= 2.5 mT at 
Bc2.5 T to B,=2.8 mT at 8~2.7 T. In fig. Sb the 
region of low transmission is shown. Here the con- 
ductance contribution of the third edge channel is 
nearly zero except when the Fermi energy coincides 

with the energy of a OD state. The discrete peaks 

1 ?F--- 1 

clearly demonstrate the resonant transmission through 
the quantum dot. 

OD states belonging to other partially transmitted 
edge channels are also observed. In fig. 5c the oscil- 
lations are shown which originate from the second 
channel. A striking feature is that the period (B,= 5.3 
ml: at B~5.1 T) differs from the period of the os- 

cillations belonging to the third edge channel. Also 
the observed oscillations from the fourth (B,=2.1 
mTat B= 1.85 T) and fifth (B,= 1.4 mT at B= 1.25 
T) edge channels differ in their period. The origin of 
the difference in period for different edge channels 
will he discussed below. The observation of a distinct 
periodfor each transition again indicates that the os- 
ci[lations originate from a sing/e edge charnel only. 

To estimate the energy separation between con- 
secutive OD states, we have measured the oscilla- 

tions for different temperatures and voltages across 
the sample. The oscillations disappear above 200 mK 
and 40 PV, which both Iead to an energy separation 
of about 40 FeV. 

A second way to change the flux is by changing the 
area enclosed by the confined edge channel. This is 
accomplished by varying the gate voltage at a fixed 
magnetic field. Fig. 6a shows the OD states for B= 2.5 
T and a changing gate voltage on both gate pairs. The 
oscillation period is 1 mV. For a fixed voltage ( -0.35 
V) on one gate pair and a changing voltage on the 

J 
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MAGNETIC FIELD (T) 
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GATE VOLTAGE tV) 
Fig. 5. (a) Enlarged oscillations from fig. 4c showing their regu- 

larity (period &=2.S mT).(b) Region of low transmissions of 
the third edge channel (G,,Ga%2). The discrete conductance 

peaks demonstrate resonant transmission through OD states, (c) 

Oscillatons belonging to the second edge channel (period B,= 5.3 

mT). (period=2 mV). 

Fig. 6. Conductance oscillations as a function of gate voltage for 

a fixed magnetic field B=2.5 T. In (a) the voltage on both gate 

pairs is varied (period= 1 mV) and in (b) the gate voltage on 

one pair is kep fixed at -0.35 V and varied on the other gate pair 



296 L.P. Kouwenhoven et aLlTransport through OD states in a quantum dot 

other pair the observed period is 2 mV, as can be seen 
in fig. 6b. Assuming that in the latter case only half 

of the area in the dot is effected, we conclude that a 
variation in gate voltage changes the area enclosed 
by the edge channels. Thus our device also provides 
an electrostatic control of the resonant transmission 
through OD states. 

5.3. Discussion 

In part 1 of this section we have discussed the fact 
that the amplitude modulation of the oscillations is 
determined by the barrier transmissions TA and T,. 
To compare the measured modulation with eq. (6) 
we can use the conductances G, and Gr, of the in- 
dividual QPCs (figs. 4a and 4b) in the expression 
for T,. The calculated conductance CD is shown in 
fig. 4d. We have included temperature averaging in 
the calculation with the expression CD = JG,( E) [ df/ 
a_!?] dE in which f(E,T) is the Fermi distribution 
function and G,(E) the energy dependent conduc- 
tance at zero temperature. The latter can be obtained 
from eqs. (4) and (6) by noting that a change in 
phase of 2x corresponds to a change in energy of 40 
,ueV. Note that by averaging of eq. (6 ) over a large 
energy range (larger than the energy range corre- 
sponding to a change in phase of 2~) the classical 
result of eq. (5) is obtained. We have chosen a fixed 
period of 3 mT in the calculation and an effective 
temperature of 20 mK, which is the sample temper- 
ature (6 mK) plus a contribution from the voltage 
( = 6 ,uV ) across the sample. Comparing the mea- 
sured (fig. 4c) and the calculated (fig. 4d) conduc- 
tance CD, it can be seen that these are in good agree- 
ment. Also the shape of the oscillations which is 
rounded for strong coupling and peaked for weak 
coupling, appears the same in the measurements as 
in the calculation. The exact modulation is not re- 
produced in the calculation, which is probably due 
to a slight mutual influence between the gate pairs 
when both are turned on. 

The conductance oscillations described in this pa- 
per are reminiscent of the Aharonov-Bohm effect 
observed in small metal [ 181 and semiconductor 
rings [ 191, However, in these systems the electrons 
are already confined in a ring in the absence of a 
magnetic field. The conductance of such rings oscil- 
lates as a function B with a period @,/A (A is the fixed 

area enclosed by the ring) even if the wires are not 
1 D. In fact this Aharonov-Bohm effect quenches for 
high magnetic fields when edge channels are formed 
in the wires [ 191. In contrast to this, edge channels 
are the starting point for the occurrence of oscilla- 
tions in the quantum dot. The period of our oscil- 
lations is also not simply determined by the dot area 
because of the change in location of the edge chan- 
nels when the magnetic field is varied. The change 
in radius Ar of the edge channel loop follows from 
eq. (2) as: Ar=AV(x,y)/E=A&/(eE) which var- 
ies with the magnetic field, differs for different in- 

dices n or spin direction, and depends on the “hard- 
ness” of the boundary potential given by the radial 
electric field E. Assuming circular symmetry for the 
edge channel loop we can write the change in en- 
closed flux A@ resulting from a change in field AB 

as: 

(7) 

Evaluation of eq. (7 ) with r= 750 nm, B= 2.5 T and 
a rough estimate Ezz 104-1 5’ V/m shows that the 
second term (which is negative! ) can be of the same 
order of magnitude as the first term # ’ The observed 
period B,=@,AB/A@ is therefore not simply deter- 
mined by the enclosed area. The observation of dis- 
tinct periods at different transitions, well separated 
by quantized regions, shows that the oscillations or- 
ginate from single 1D edge channels. This conclu- 
sion provides strong evidence that in the ballistic 
quantum Hall regime the net current is completely 
carried by edge channels. 

6. Concluding remarks 

Edge channels in combination with QPCs provide 
a simple and elegant system for studying electron 
transport of reduced dimensionality. Using the ad- 
justable barriers of QPCs we have realized a 1 D elec- 

#’ At the 2DEG boundary the electrostatic potential changes by 

an amount E,/e ( = 9 mV) in a depletion region which is about 

300 nm wide. This gives a typical field strength E= 3 x lo4 V/ 

m. A derivation of the period is also given by L.I. Glazman 

and M. Jonson in ref. [ 131. 



L.P. Kouwenhoven et al./Transport through OD states in a quantum dot 297 

tron interferometer. The rigidity of edge channels is 
illustrated by the occurrence of adiabatic transport 
through the series QPC device. Single electron states 
are formed when a 1D edge channel is confined be- 
tween two barriers. These OD states can be tuned by 
varying the magnetic field and the gate voltage. The 
resonant transmission through OD states is clearly 
observed as regular oscillations in the conductance. 
The experiment contirmes the edge channel descrip- 
tion of transport in the ballistic quantum Hall regime. 
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