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Now that it is possible to achieve measurement and control 
fidelities for individual quantum bits (qubits) above the threshold 
for fault tolerance, attention is moving towards the difficult task 
of scaling up the number of physical qubits to the large numbers 
that are needed for fault-tolerant quantum computing1,2. In this 
context, quantum-dot-based spin qubits could have substantial 
advantages over other types of qubit owing to their potential for 
all-electrical operation and ability to be integrated at high density 
onto an industrial platform3–5. Initialization, readout and single- 
and two-qubit gates have been demonstrated in various quantum-
dot-based qubit representations6–9. However, as seen with small-
scale demonstrations of quantum computers using other types of 
qubit10–13, combining these elements leads to challenges related to 
qubit crosstalk, state leakage, calibration and control hardware. Here 
we overcome these challenges by using carefully designed control 
techniques to demonstrate a programmable two-qubit quantum 
processor in a silicon device that can perform the Deutsch–Josza 
algorithm and the Grover search algorithm—canonical examples of 
quantum algorithms that outperform their classical analogues. We 
characterize the entanglement in our processor by using quantum-
state tomography of Bell states, measuring state fidelities of 85–89 
per cent and concurrences of 73–82 per cent. These results pave the 
way for larger-scale quantum computers that use spins confined to 
quantum dots.

Solid-state approaches to quantum computing are challenging to 
realize owing to unwanted interactions between the qubit and the host 
material. For quantum-dot-based qubits, charge and nuclear-spin 
noise are the dominant sources of decoherence and gate errors. Some 
of these effects can be cancelled out by using dynamical decoupling14 or  
decoherence-free subspaces9,15, but there has also been substantial 
progress in reducing these noise sources by growing better oxides and 
heterostructures16 and moving to silicon, owing to its naturally low 
abundance of nuclear-spin isotopes that can be removed through iso-
topic purification17. These material developments have greatly extended 
the coherence times of qubits, enabling single-qubit gate fideli ties 
of above 99%18–21, and recently resulted in the demonstration of a  
controlled-phase (CZ) gate between two single-electron-spin qubits in 
a silicon metal–oxide–semiconductor (Si-MOS) device8. Here, we show 
that with two single-electron-spin qubits in a natural silicon/silicon 
germa nium (Si/SiGe) double quantum dot we can combine initialization,  
readout, single- and two-qubit gates to form a programmable quantum 
processor in silicon that can perform simple quantum algorithms.

A schematic of the two-qubit quantum processor is shown in Fig. 1a. 
The device is similar to that described previously22 except for an addi-
tional micrometre-scale magnet (‘micromagnet’). A two-dimensional 
electron gas is formed in the natural silicon quantum well of a SiGe 
heterostructure using two accumulation gates. The double quantum 
dot is defined in this two-dimensional electron gas by applying negative 
voltages to the depletion gates, with the estimated positions of the first 
(D1) and second (D2) quantum dot shown by the purple and orange 
circles, respectively. The two qubits, Q1 and Q2, are defined by applying 

a finite magnetic field Bext = 617 mT and using the Zeeman-split spin-
down |0〉 and spin-up |1〉 states of single electrons, respectively, which 
are confined in D1 and D2. The initialization and readout of Q2 are 
performed by spin-selective tunnelling to a reservoir23, while Q1 is 
initialized at a spin-relaxation hotspot24 and measured via Q2 using a 
controlled-rotation (CROT) gate. The complete measurement sequence 
and set-up are described in Extended Data Figs 1 and 2. We achieve 
initialization (‘I’ subscript) and readout (‘m’ subscript) fidelities for 
the two qubits of FI1 > 99%, FI2 > 99%, Fm1 = 73% and Fm2 = 81% (see 
Methods).

The coherent individual control of both qubits is achieved by pat-
terning three cobalt micromagnets on top of the device (Fig. 1a). 
These micromagnets provide a magnetic-field gradient with a com-
ponent that is perpendicular to the external magnetic field for electric 
dipole spin resonance (EDSR)25. Furthermore, the field gradient 
across the two dots results in qubit frequencies that are well separated 
(fQ1 = 18.4 GHz, fQ2 = 19.7 GHz), which allows the qubits to be 
addressed independently. For both qubits, we achieve Rabi frequen-
cies of fR = ωR/(2π) = 2 MHz and perform single-qubit X and Y  
gates by using vector modulation of the microwave drive signals. Here, 
we define an X (Y) gate to be a π/2 rotation around x̂ (ŷ), and hence-
forth define a π rotation to be X2 (Y2). We measure the spin relaxation 
time (T1), free evolution time ( ⁎T 2) and the Hahn echo decay time 
(T2Hahn) of Q1 in the (1, 1) regime (where (m, n) denotes a configu-
ration with m electrons in D1 and n electrons in D2) to be T1 > 50 ms, 

⁎ = . ± . μT 1 0 0 1 s2  and T2Hahn = 19 ± 3 μs, and those of Q2 to be 
T1 > 3.7 ± 0.5 ms, ⁎ = . ± . μT 0 6 0 1 s2  and T2Hahn = 7 ± 1 μs (Extended 
Data Fig. 3). Using randomized benchmarking20,26 we find average 
single-qubit gate fidelities of 98.8% for Q1 and 98.0% for Q2 
(Extended Data Fig. 4)—close to the fault-tolerance error threshold 
for surface codes27.

Universal quantum computing requires the implementation of  
single- and two-qubit gates. In our quantum processor we implement 
a two-qubit CZ gate8,28. This gate can be understood by considering 
the energy-level diagram for two electron spins in a double quantum 
dot (Fig. 1b), in the regime in which the Zeeman-energy difference 
is comparable to the inter-dot tunnel coupling (ΔEZ ≈ tc). In Fig. 1b 
we plot the energies of the two-spin states (|00〉, |01〉, |10〉 and |11〉) 
in the (1, 1) charge regime and the singlet ground state S(0, 2) in the 
(0, 2) charge regime as a function of the detuning ε. Here, detuning 
describes the energy difference between the (1, 1) and (0, 2) charge 
states of the double quantum dot, controlled by the voltage applied to 
plunger gate P1 (Extended Data Fig. 2). The anticrossing between the 
S(0, 2) and the antiparallel |01〉 and |10〉 states causes the energy of the 
antiparallel states to decrease by J(ε)/2 as the detuning is decreased 
(Fig. 1b), where J(ε) is the exchange coupling between the two elec-
tron spins.

The energy structure of the two-electron system can be probed 
by performing microwave spectroscopy as a function of detuning  
(Fig. 1c). At negative detuning, the resonance frequency (Zeeman 
energy) increases linearly (dashed line) owing to the electron 
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wavefunction moving in the magnetic-field gradient. At more positive 
detuning, closer to the (0, 2) regime, the exchange energy is substantial 
compared to the line width of the resonance J/h > ωR (where h = 2πħ is 
the Planck constant), resulting in two clear resonances. Applying a π 
pulse at one of these frequencies results in a CROT gate, which is used 
to perform the projective measurement of Q1 via the readout of Q2 
(Extended Data Fig. 6).

The CZ gate is implemented by applying a detuning pulse for a fixed 
amount of time t, which shifts the energy of the antiparallel states. 
Throughout the pulse, we stay in the regime in which ε Δ�J E( ) Z, so 
the energy eigenstates of the system are still the two-spin product states 
and the two-qubit interaction can be approximated by an Ising 
Hamiltonian, leading to the following unitary operation:
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where the basis states are |00〉, |01〉, |10〉 and |11〉, and Z1(θ1) and Z2(θ2) 
are rotations around ẑ caused by the change in the Zeeman energy of 
the qubits due to the magnetic-field gradient. The CZ gate is advanta-
geous over the CROT gate because it is faster and less time is spent at 
low detuning, at which the qubits are more sensitive to charge noise. In 
addition, we observed that performing the CROT gate with EDSR can 
lead to state leakage into the S(0, 2) state, seen in Fig. 1c by the increase 
in background dark counts near ε = 0. The CZ gate is demonstrated  
in Fig. 1d; we vary the duration of a CZ voltage pulse between two X 
gates on Q2 in a Ramsey experiment, showing that the frequency  
of the ẑ rotation on Q2 is conditional on the spin state of Q1. The  
processor’s primitive two-qubit gates, CZij|m, n〉 = (−1)δ(i,m)δ(j,n)|m, n〉 
for i, j, m, n ∈ {0, 1}, are constructed by applying the CZ gate for  
a time t = πħ/J followed by ẑ  rotations on Q1 and Q2, CZij =  
Z1[(−1)jπ/2 − θ1]Z2[(−1)iπ/2 − θ2]UCZ(πħ/J). Rather than physically 
performing the ẑ  rotations, we change the reference frame in the  
software by incorporating the rotation angles θ1 and θ2 into the phase 
of any subsequent microwave pulses10.
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Figure 1 | Two-qubit quantum processor in silicon. a, Schematic of a  
Si/SiGe double-quantum-dot device, showing the estimated positions of 
quantum dots D1 (purple circle) and D2 (orange circle) that are used to 
confine two electron-spin qubits Q1 and Q2, respectively. Both quantum 
dots were formed from the two-dimensional electron gas (2DEG) in the 
silicon quantum well (Si QW) on the right side of the device to achieve an 
inter-dot tunnel coupling that is suitable for two-qubit gates. The positions 
of the dots were realized by tuning the numerous accumulation and 
depletion gates, but were probably helped by disorder in the Si/SiGe 
heterostructure. The ellipse shows the position of the quantum-dot sensor 
used for spin readout. Microwave signals MW1 and MW2 are used to 
perform electric dipole spin resonance (EDSR), mediated by the cobalt 
(Co) micromagnets, on Q1 and Q2, respectively, while voltage pulses are 
applied to plunger gates P1 and P2 for qubit manipulation and readout. 
b, Energy-level diagram of two electron spins in a double quantum dot as a 
function of the detuning energy ε between the (1, 1) and (0, 2) charge 
states. Towards zero detuning the energy levels of the anti-parallel spin 
states shift by half the exchange energy J (see inset) c, Microwave 
spectroscopy of Q2 showing the spin-up probability P|1〉 versus the MW2 
frequency and detuning energy after initialization of Q1 to | 〉 + | 〉 /( 0 1 ) 2 . 
The detuning voltage was converted to energy using a lever arm of 
α = 0.09e, where e is the electron charge (Extended Data Fig. 5). The map 

shows that Q2 has two different resonant frequencies (blue arrows in b) 
depending on the spin state of Q1, which are separated by the exchange 
energy J. d, The spin-up probability of Q2 after applying the Ramsey 
sequence (see inset) in which the duration of the detuning pulse is varied 
between two X gates on Q2, and the control Q1 is initialized to spin-down 
(blue curve) or spin-up (red curve). e, The spin-up probability of the target 
qubit (T; Q1) after applying the Ramsey sequence shown above the plot, in 
which a CZ gate is applied between two π/2 pulses and the phase of the 
second π/2 pulse is varied. Here, the control (C) qubit (C; Q2) is initialized 
to spin-down (blue curve) or spin-up (red curve) and the spin-up 
probability has been normalized to remove initialization and readout 
errors. The exchange energy during the CZ gate is J/h = 10 MHz. f, Similar 
to e, but with Q2 as the target qubit and Q1 as the control qubit. In e and 
f, the black dashed lines show the ẑ  rotations on Q1 and Q2 that are 
needed to form the CZij gates. g, h, Similar to e and f, but using a 
decoupled version of the CZ gate (DCZ gate), which removes the 
unconditional ẑ  rotations due to the detuning dependence of EZ(ε). 
Consequently, the ẑ  rotations that are required to form the CZij gates 
(dashed black lines) are always at 90° and 270°, which simplifies the 
calibration. All error bars are 1σ from the mean, calculated using a Monte 
Carlo method (see Methods).
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Combining single- and two-qubit gates together with initialization 
and readout, we demonstrate a programmable processor—whereby 
we can program arbitrary sequences for the two-qubit chip to  
execute within the coherence times of the qubits. To achieve this,  
several challenges needed to be overcome. The device had to be 
tuned further so that during single-qubit gates the exchange coupling 
was low (Joff/h = 0.27 MHz; Extended Data Fig. 7) compared to our  
single-qubit (about 2 MHz) and two-qubit (about 6–10 MHz) gate 
times. Tuning was also required to raise the energy of low-lying  
valley-excited states to prevent them from being populated during  
initialization22. Furthermore, we observed that applying microwave 
pulses on Q1 shifts the resonance frequency of Q2 by around 2 MHz. 
We rule out the AC Stark shift and effects from coupling between the 
spins and from heating as possible explanations, but find that the prop-
erties of the quantum dots affect the frequency shift (Supplementary 
Information, section S1). Although the origin of the shift is unknown, 
we keep the resonance frequency of Q2 fixed during single-qubit gates 
by applying an off-resonant pulse (30 MHz) to Q1 if Q1 is idle.

Before running sequences on the quantum processor, all gates need 
to be properly calibrated. The single-qubit X and Y gates were calibrated 
using both a Ramsey sequence and the AllXY calibration sequence to 
determine the qubit resonance frequency and the power needed to 
perform a π/2 gate (Supplementary Information, section S2). To cali-
brate the CZij gates we performed the Ramsey sequence shown in  
Fig. 1e and varied the phase of the second π/2 gate. In Fig. 1e we show 
the results of this measurement, for which Q1 is the target qubit and 
the control qubit Q2 is prepared in either the |0〉 (blue curve) or |1〉 (red 
curve) state. The duration of the CZ gate is calibrated so that the blue 
and red curves are 180° out of phase. These measurements also deter-
mine the ẑ rotation on Q1 that is needed to form CZij, which corres-
ponds to the phase of the second π/2 gate, which either maximizes or 
minimizes the spin-up probability for Q2 (dashed lines in Fig. 1e).  
The ẑ rotation needed for Q2 is calibrated by performing a similar 
measurement, but with the roles of Q1 and Q2 switched (Fig. 1f).

The ẑ  rotations in equation (1) can be eliminated by using a  
decoupled CZ gate, = π / π /Z U ħ J X X U ħ JDC ( (2 )) ( (2 ))Z ZC 1

2
2
2

C , which 
incorporates refocusing pulses and can be used to perform 
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1 2      This opera tion 
is demonstrated in the Ramsey experiment shown in Fig. 1g, h, in 
which the minimum and maximum spin-up probabilities occur at a 
phase of either 90° or 270°. In addition to removing the need to cali-
brate the required ẑ rotations, the DCZ gate is advantageous because 
it cancels out the effect of the low-frequency noise that couples to the 
spins via σZ ⊗ I and I ⊗ σZ terms during the implementation of the 
gate, where I is the 2 × 2 identity matrix and σZ is the Pauli z  
matrix.

After proper calibration, we characterize entanglement in our quan-
tum processor by preparing Bell states and reconstructing the two-qubit 
density matrix using quantum-state tomography. The quantum circuit 
for the experiment is shown in Fig. 2a. The Bell states are prepared 
using a combination of single-qubit gates and the decoupled two-qubit 
DCZij gates. The density matrix is reconstructed by measuring two-spin 
probabilities for the nine combinations of three different measurement 
bases (x, y, z) with 10,000 repetitions (Methods). In our readout scheme 
the states are projected into the z basis, while measurements in the other 
bases are achieved by performing X and Y pre-rotations. Owing to the 
time needed to perform these measurements (about 2 h), the frequency 
of the qubits was calibrated after every 100 repetitions. The real com-
ponents of the reconstructed density matrices of the four Bell states 
( | 〉±| 〉 /( 00 11 ) 2 , | 〉±| 〉( 01 10 ) 2 ) are shown in Fig. 2b–e. The state 
fidelities F = 〈ψ|ρ|ψ〉 between the measured density matrix (ρ) and the 
target Bell state (ψ) range from 85% to 89% and the concurrences from 
73% to 82%, demonstrating entanglement. A parallel experiment 
reported a Bell-state fidelity of 78%29.

To test the programmability of the two-qubit quantum processor we 
perform the Deutsch–Josza30 and Grover search31 quantum algorithms. 

The Deutsch–Josza algorithm determines whether a function is con-
stant (f1(0) = f1(1) = 0 or f2(0) = f2(1) = 1) or balanced (f3(0) = 0, 
f3(1) = 1 or f4(0) = 1, f4(1) = 0). These four functions are mapped onto 
the unitary operators =U If1 , =U Xf 2

2
2

, = =U Y CZ YCNOTf 2 11 23
 and 

= =U Y CZ YZ­CNOTf 2 00 24
  , where the overbar denotes a negative rota-

tion. For both the controlled-NOT (CNOT) and the zero- 
controlled-NOT (Z-CNOT) gates, the target qubit is Q2. At the end of 
the sequence the input qubit (Q1) will be in the |0〉 or |1〉 state for the 
constant and balanced functions, respectively. Grover’s search algo-
rithm provides an optimal method for finding the unique input value 
x0 of a function f(x) that gives f(x0) = 1 and f(x) = 0 for all other values 
of x. In the two-qubit version of this algorithm there are four input 
values, x ∈ {00, 01, 10, 11}, resulting in four possible functions fij(x), 
with i, j ∈ {0, 1}. These functions are mapped onto the unitary opera-
tors, | 〉 = − | 〉Z x xC ( 1)ij

f x( )ij   , which mark the input state with a negative 
phase if fij(x) = 1. The algorithm finds the state that has been marked 
and outputs it at the end of the sequence.

In Fig. 3 we show the measured two-spin probabilities as a function 
of time during the algorithms for each function. The experimental 
results (circles) are in good agreement with the simulated ideal cases 
(dashed lines). Although a number of repetitions are needed as a result 
of gate and readout errors, the algorithms are successful at determining 
the balanced and constant functions and finding the marked state in the 
oracle functions. The data shown as square symbols are taken shortly 
after calibration and are in line with the experimental results (circles), 
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Figure 2 | Preparation of the Bell states and two-qubit entanglement  
in silicon. a, The quantum circuit used to prepare the Bell states  
and to perform quantum state tomography. The Bell states are prepared 
using a combination of single-qubit Y gates and two-qubit DCZij gates 
while quantum-state tomography is performed by using different 
combinations of I, X and Y pre-rotation gates, where I corresponds  
to the identity. b–e, The real component of the reconstructed density 
matrices (Re(ρ)), determined using a maximum-likelihood estimate for 
the four Bell states Ψ = + /+ ( 01 10 ) 2  (b), Ψ = − /− ( 01 10 ) 2  (c), 
Φ = + /+ ( 00 11 ) 2  (d), Φ = − /− ( 00 11 ) 2  (e). The imaginary 
components of the elements of the density matrices are less than 0.08  
in all cases (Supplementary Information, section S3). We measure state 
fidelities of = . ± .Ψ+F 0 88 0 02, = . ± .Ψ−F 0 88 0 02, = . ± .Φ+F 0 85 0 02 and 

= . ± .Φ−F 0 89 0 02, and concurrences of = . ± .Ψ+c 0 80 0 03, = . ± .Ψ−c 0 82 0 03, 
= . ± .Φ+c 0 73 0 03 and = . ± .Φ−c 0 79 0 03; all errors are 1σ from the mean.
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indicating that calibrations remain stable throughout the hour of data 
collection. The diamonds show the outcome of the algorithms using 
the DCZ gate. In most cases, the diamonds also show similar values to 
the circles, which means that the DCZ gate does not improve the final 
result. This suggests that low-frequency single-qubit noise during the 
CZ gate is not dominant. The substantial difference between Hahn-
echo and Ramsey decay times still points to substantial low-frequency 
noise. Single-qubit low-frequency noise, whether from nuclear-spin 
or charge noise, reduces single-qubit coherence, in particular during 
wait and idle times in the algorithms. In addition, charge noise affects 
the coupling strength J during the implementation of the CZ gates. 
Numerical simulations (solid lines in Fig. 3c, d and Extended Data  
Fig. 10) show that quasi-static nuclear-spin and charge noise can repro-
duce most of the features seen in the data for the two-qubit algorithm 
(Methods). Smaller error contributions include residual coupling dur-
ing single-qubit operations and miscalibrations.

Substantial improvements could be made in the performance of the 
processor by using isotopically purified 28Si (refs 18, 19, 21), which 
would increase the coherence times of the qubits. Furthermore, recent 
experiments have shown that symmetrically operating an exchange 
gate by pulsing the tunnel coupling rather than the detuning leads 
to a gate that is less sensitive to charge noise, greatly improving  
fidelities32,33. With these improvements, and combined with more 
reproducible and scalable device structures, quantum computers 
with multiple qubits and fidelities above the fault-tolerance threshold 
should be realizable.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 3 | Two-qubit quantum algorithms in silicon. a, b, Quantum 
circuits showing the sequences of single- and two-qubit gates that were 
applied for the Deutsch–Josza algorithm (a) and the Grover search 
algorithm (b) for two qubits. The Deutsch–Josza algorithm determines 
whether the function Uf is constant or balanced; the Grover search 
algorithm finds the state marked by the function Uf. c, d, Two-spin 
probabilities as a function of time throughout the sequence during the 
Deutsch–Josza algorithm (c) and the Grover search algorithm (d), for each 
of four possible functions. Each experimental data point (circles) 
corresponds to 4,000 repetitions and has been normalized to remove 
readout errors. The dashed lines are the simulated ideal cases and the solid 

lines are the simulated results when decoherence is introduced by 
including quasi-static nuclear-spin and charge noise (σε = 11 μeV). For 
both algorithms, the square data points show the final results of the 
algorithms when all four functions are evaluated in the same measurement 
run with identical calibration. The diamonds show the result of both 
algorithms when using the DCZ gate, demonstrating similar performance 
to the CZ gate. For the Deutsch–Josza algorithm, the identity I is 
implemented as either a 200-ns wait (circles and squares) or as =I X X1

4
2
4 

(diamonds). All error bars are 1σ from the mean. The red and blue shading 
in c and d corresponds to that in a and b.
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MethOdS
Estimate of initialization and readout errors for Q1 and Q2. The initialization 
and readout procedures for Q1 and Q2 are described in Extended Data Fig. 2. 
The initialization and readout fidelities of Q2 were extracted by performing the 
following three experiments and measuring the resulting spin-up probabilities  
(P1, P2 and P3): (i) initialize Q2 and wait for 7T1; (ii) initialize Q2; and (iii) initia-
lize and perform a π rotation on Q2. These three spin-up probabilities are related 
to the initialization fidelity (γ2) and the spin-up and spin-down readout fidelities 
(F|0〉,2 and F|1〉,2) by

γ γ

γ γ

= −

= − + −

= + − −

| 〉

| 〉 | 〉

π
| 〉 | 〉

P F

P F F
P
P

F F

1

(1 ) (1 )

(1 )(1 )

(2)

1 0 ,2

2 1 ,2 2 0 ,2 2

3

2
1 ,2 2 0 ,2 2

where Pπ2 is the expected probability to be in the spin-up state after the application 
of the π pulse for Q2, which is determined as described below. In equation (2)  
we assume that a waiting time of 7T1 leads to 100% initialization and that  
the measured spin-up counts are due to the readout infidelity. By solving these 
equations we can extract the initialization and readout fidelities. For Q1, we per-
formed initialization by pulsing to a spin-relaxation hotspot (Extended Data Fig. 5)  
for 500T1 and we therefore assume that the initialization fidelity is about 100%. 
Consequently, the readout fidelities of Q1 were extracted by performing only 
experiments (ii) and (iii) above. The readout and initialization fidelities for Q1 
(Q2) during the state tomography experiments were estimated to be γ1 > 99% 
(γ2 > 99%), F|0〉,1 = 92% (F|0〉,2 = 86%) and F|1〉,1 = 54% (F|1〉,2 = 76%), for which we 
used Pπ1 = 98% (Pπ2 = 97%) on the basis of simulations that include the dephasing 
time of the qubits (see below). The average measurement fidelity Fm = (F|0〉 + F|1〉)/2 
for Q1 (Q2) is 73% (81%). These fidelities are limited mostly by the finite electron 
temperature Te ≈ 130 mK and the fast spin-relaxation time of Q2 (T1 = 3.7 ms), 
which is probably caused by a spin-relaxation hotspot that is due to a similar valley 
splitting and Zeeman energy36.
Removing readout errors from the measured two-spin probabilities. In the 
experiment the measured two-spin probabilities = | 〉 | 〉 | 〉 | 〉P P P P P( , , , )M

00
M

01
M

10
M

11
M T  

include errors due to the limited readout fidelities F|0〉,i and F|1〉,i of spin-down (0) 
and spin-up (1) electrons for qubit i. To remove these readout errors and obtain 
the actual two-spin probabilities P = (P|00〉, P|01〉, P|10〉, P|11〉)T, we use the relation-
ship = ⊗P PF F( ˆ ˆ )M

1 2 , where
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State tomography. The density matrix of a two-qubit state can be expressed as 
ρ= ∑ = c Mi i i1

16 , where Mi are 16 linearly independent measurement operators. The 
coefficients ci are calculated from the expectation values mi of the measurement 
operators using a maximum-likelihood estimate11,37. The expectation values were 
calculated by performing 16 combinations of (I, X, Y, X2) pre-rotations on Q1 and 
Q2 and measuring the two-spin probabilities over 10,000 repetitions per measure-
ment. The two-spin probabilities were converted to actual two-spin probabilities 
by removing the readout errors using equation (3). To calculate the density matri-
ces shown in Fig. 2 we used only the data from the (I, X, Y) pre-rotations on the 
assumption that I will give a more accurate estimate of the expectation values than 
X2 owing to gate infidelities. If we include X2 then we achieve state fidelities of 
80%–84% and concurrences of 67%–71% (Supplementary Information, section 
S3). In the analysis we assume that the pre-rotations are perfect, which is a reason-
able approximation owing to the high single-qubit Clifford-gate fidelities (98%) 
compared to the measured state fidelities (85%–89%). The state tomography 
experi ment was performed in parallel with the fidelity experiments described 
above and a Ramsey experiment that was used to calibrate the frequency actively.
Error analysis. Error analysis was performed using a Monte Carlo method by assum-
ing a multinomial distribution for the measured two-spin probabilities and a bino-
mial distribution for the probabilities P1, P2 and P3 used to calculated the fidelities.  
Values from these distributions were sampled randomly and the procedures out-
lined above were followed. This was repeated 250 times to build up the final dis-
tributions that we used to determine the mean values and the standard deviation.
Simulation of two electron spins in a double quantum dot. In the simulation, 
we consider two electrons in two tunnel-coupled quantum dots, with an external 
magnetic field B0 applied to both dots. In addition to this field, the two dots have 
different Zeeman energies owing to the magnetic-field gradient across the double 
quantum dot that is generated by the micromagnets. The Zeeman energy of Q1 
(Q2) is denoted as EZ1 (EZ2). The double-quantum-dot system is modelled by the 
Hamiltonian38
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with the states |00〉, |01〉, |10〉, |11〉, S(2, 0) and S(0, 2) as the eigenbasis. In this 
Hamiltonian, β = (EZ1 + EZ2)/2, Δv = (EZ1 − EZ2)/2, t2  is the tunnel coupling 
between the (1, 1) and (0, 2)/(2, 0) singlet states, and Ui is the on-site charging 
energy of the ith quantum dot. To study the phases of the qubits during the control 
pulses, the Hamiltonian is transformed into a rotating frame using

= + ∂
∼H VHV iħ V V( ) (4)t

† †

where σ σ= − ⊗ + ⊗V i E I E I texp{ [ ( ˆ )̂ (ˆ ˆ )] }z zZ1 Z2  is the matrix that describes  
the unitary transformation normalized such that ħ = 1. The transformed 
Hamiltonian is
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To model the single-qubit gates during EDSR, we use the Hamiltonian

∑ ω φ σ σ= + ⊗ + ⊗H B t I Iˆ cos( )( ˆ ˆ ˆ ˆ )
k

k k k x xMW MW,

which assumes the same drive amplitude on each of the qubits. Here, k repre-
sents the kth signal, which has an angular frequency ωk, phase ϕk and driving  
amplitude BMW,k. This Hamiltonian is transformed into the rotating frame using 
equation (4), and the rotating-wave approximation can be made to remove the 
fast-driving elements because the Rabi frequency is much smaller than the Larmor 
precession. Doing so gives the Hamiltonian
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where Ω = φB ek k
i

MW, k, ⁎Ωk  is the complex conjugate of Ωk and ω ω ωΔ = −k k qubiti .
The dynamics of the two-qubit system can be described by the Schrödinger–von 

Neumann equation, ρ ρ=+Δ
− / /∼ ∼

e et t
iHt ħ

t
iHt ħ, which we solved numerically using 

the Armadillo linear algebra library in C++, with the matrix exponentials solved 
using scaling methods ( = ∏ /e eA

s
A 2s ) and a Taylor expansion. In the experiments, 

we apply microwave pulses with square envelopes that have a finite rise time owing 
to the limited bandwidth of the in-phase (I) and quadrature (Q) modulation chan-
nels of the microwave vector source. For simplicity, we approximate these micro-
wave pulses with a perfect square envelope. The detuning pulses were modelled 
with a finite rise and fall time using a Fermi–Dirac function to take (a)diabatic 
effects into account. The finite rise time was set to 2 ns on the basis of the cut-off 
frequency of the low-pass filter that was attached to the lines and used to pulse the 
detuning pulses.
Modelling noise in the simulation. In the model we include three different noise 
sources. The first two noise sources are from fluctuating nuclear spins in the natural 
silicon quantum well, which generate quasi-static magnetic noise that couples to 
the qubits via the Z ⊗ I and I ⊗ Z terms in the Hamiltonian. These fluctuations 
are treated as two independent noise sources because D1 and D2 are in different 
locations in the quantum well and sample the field from different nuclear spins. 
The third noise source is charge noise, which can couple to the qubits via the 
magnetic-field gradient from the micromagnets. We model this noise as magnetic 
noise on the Z ⊗ I and I ⊗ Z terms in the Hamiltonian. Charge noise also couples 
to the spins via the exchange coupling, which leads to noise on the Z ⊗ Z term in 
the Hamiltonian.

In our simulations, we treat these noise sources as quasi-static, whereby the 
noise is static within each cycle and changes only between measurement cycles. 
This approximation is reasonable because the noise in the system is pink, with 
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low frequencies in the power spectrum being more pronounced20. The static 
noise due to each noise source was modelled by sampling a random value from a 
Gaussian distribution with standard deviation σ, corresponding to the contribu-
tion to dephasing of that noise process. After sampling the static noise, the time 
evolution of the qubits during a gate sequence was calculated. This time evolution 
was averaged over many repetitions to give the final result; for each repetition new 
values for the static noise were sampled. In total, for each simulation we performed 
5,000 repetitions to ensure convergence.

In the experiment, single-qubit gates are performed at higher detuning near the 
centre of the (1, 1) charge region at a detuning of ε = −3 meV, where the exchange 
is low (Joff = 270 kHz); a two-qubit CZ gate is performed by pulsing to low detuning 
ε = −0.7 meV, where the exchange is high (Jon = 6 MHz). To estimate the relative 
effect of charge noise on the Z ⊗ I, I ⊗ Z and Z ⊗ Z terms at these two detuning 
points, we use the spectroscopy data for the qubits as a function of detuning energy 
shown in Extended Data Fig. 8. The four resonances observed correspond to the 
four transitions shown in Extended Data Fig. 8c between the |00〉, |01〉, |10〉 and 
|11〉 eigenstates. From fits of this data we estimate the derivative of the transition 
energy from state |i〉 to |j〉 at a particular detuning, dE|i〉→|j〉/dε|ε, which is directly 
proportional to the magnitude of fluctuations in the transition energy under the 
influence of charge noise. Fixing the energy of the |00〉 state, from these derivatives 
we calculate the relative noise levels on the other energy eigenstates:
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In the regime in which Δ�J v, the Hamiltonian of the system can be approxi-
mated as H = −EZ1(Z ⊗ I) − EZ2(I ⊗ Z) + J(Z ⊗ Z) − J/4(I ⊗ I). The relative noise 
on EZ1, EZ2 and J is found by decomposing the four noise levels in equation (5) in 
terms of the basis (−Z ⊗ I, −I ⊗ Z, Z ⊗ Z, −I ⊗ I/4) by calculating A−1B(ε), where
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We estimate the relative composition of the noise for (EZ1, EZ2, J) at ε = −3 meV 
to be (0.12, 0.24, 0) and at ε = −0.7 meV (J = 6 MHz) to be (0.61, 0.23, 0.26). Note 
that this is a crude approximation because we take into account only voltage noise 
along the detuning axis, whereas in reality charge noise acts also along other axes. 
We do not include calibration errors in the simulation. On the basis of the AllXY 
and Ramsey calibration experiments (Supplementary Information, section S2), 
miscalibrations of a few per cent are possible.
Estimating charge noise from the decay of the decoupled CZ oscillations. The 
dephasing due to charge noise coupling into the double-quantum-dot system via 
the exchange energy is measured by varying the duration of the DCZ gate between 
two π/2 pulses on Q1 (Extended Data Fig. 9) for J = 6 MHz. The DCZ gate removes 
the effect of quasi-static noise on the Z ⊗ I and I ⊗ Z terms in the Hamiltonian, and 
the decay time of the oscillations T2 = 1,640 ns is assumed to be due to noise on the 
Z ⊗ Z term. The data are fitted using either a Gaussian (black line) or exponential 
decay (red line). The exponential decay seems to fit better to the data, which sug-
gests that either higher-frequency noise plays a part39 or the origin of the noise is 
from a few two-level fluctuators40. Because the decay time of the DCZ gate is longer 
than that of the CZ gate, there is also a substantial quasi-static noise contribution. 

For simplicity, we include only the quasi-static contribution in our noise model. For 
Gaussian quasi-static noise with standard deviation σε, the decay time is

ε
σ

/ =
∂
∂ ε

εT J
ħ

1 1
2 22

The factor of 1/2 is needed because it is the noise on J/2 that contributes to the 
decay. This is because the target qubit precesses with a frequency of J/2 (ignoring 
the I ⊗ Z and Z ⊗ I terms) when the control qubit is in an eigenstate. From the 
dephasing time and dJ/dε|ε = 1.0 × 10−4 extracted from Extended Data Fig. 8a, b, 
we estimate the charge noise on the detuning to be 11 μeV. The data in Extended 
Data Fig. 9 used to extract this value were collected over about 40 min with no 
active calibration on the detuning pulse. The time needed for each single-shot 
measurement was around 10 ms.
Simulations of the two-qubit algorithms. To describe the double-quantum-dot 
system used in the experiment, we use the following parameters in the 
Hamiltonian. The qubit frequencies were chosen to be EZ1/h = 18.4 GHz and 
EZ2/h = 19.7 GHz, and the on-site charging energies to be U1 = U2 = 3.5 meV, com-
parable to the experimental values. The tunnel coupling was chosen to be 
t = 210 MHz so that the residual exchange energy Joff was 300 kHz, similar to that 
measured in the experiment. The two-qubit gates were implemented by choosing 
a value of ε for which J = 6 MHz when diagonalizing the Hamiltonian Ĥ .

The results of the simulations for the Deutsch–Josza algorithm and the Grover 
algorithm using the CZ gate and the DCZ gate are shown in Fig. 3 and Extended 
Data Fig. 10. The amplitudes for the three noise sources used in the simulations 
were identical for all 16 panels. The value of charge noise used was 11 μeV (see 
above), whereas the nuclear-spin noise for Q1 and Q2 was chosen to give the 
single-qubit decoherence times ⁎

=T 1,000 ns2  and ⁎
=T 600 ns2  measured in the 

Ramsey experiment (Extended Data Fig. 3). This gave a dephasing time of Q1 (Q2) 
due to nuclear spin of  ⁎

=T 1,200 ns2nuc  ( ⁎
=T 800 ns2nuc ). The simulations repro-

duce many of the features of the experimental data for the algorithms.
By simulating the algorithms, we learn that the residual exchange coupling 

Joff during single-qubit gates has little effect (less than 2%) on the result of the  
algorithms. Furthermore, we find that without noise on the single-qubit terms 
it is difficult to get consistent agreement with the data. Additional noise on 
the coupling strength improves the agreement. In contrast to the cases of the 
Deutsch–Jozsa algorithm and the conventional Grover algorithm, the simulation 
for the decoupled version of Grover’s algorithm predicts a better outcome than 
the experiment. This case uses the longest sequence of operations, leaving the 
most room for discrepancies between model and experiment to build up. These 
discrepancies could have several origins: (i) the implementation of the static noise 
model not being accurate enough; (ii) non-static noise having a role; (iii) the cali-
bration errors in the gates that were left out of the simulation; or (iv) variations in 
the qubit parameters and noise levels between experiments. Finally, we note that 
initialization and readout errors are not taken into account in the simulations. 
Because initialization errors are negligible and the data shown were renormalized 
to remove the effect of readout errors, the simulated and experimental results can 
be compared directly.
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Extended Data Figure 1 | Schematic of the measurement set-up. The 
sample was bonded to a printed circuit board (PCB) mounted onto 
the mixing chamber of a dilution refrigerator. All measurements were 
performed at the base temperature of the fridge, Tbase ≈ 20 mK. DC 
voltages were applied to all of the gate electrodes using room-temperature 
digital-to-analogue converters via filtered lines (not shown). Voltage 
pulses were applied to plunger gates P1 and P2 using a Tektronix 5014C 
arbitrary waveform generator (AWG) with 1-GHz clock rate. The signals 
from the AWGs passed through a room-temperature low-pass filter and 
attenuators at different stages of the fridge and were added to the DC 
signals via bias tees mounted on the PCB. Two Keysight E8267D vector 
microwave sources, MW1 and MW2, were used to apply microwaves 
(18–20 GHz) to perform EDSR on Q1 and Q2, respectively. The signals 
passed through room-temperature DC blocks and custom-built 15-GHz 
high-pass filters and attenuators at different stages of the fridge and were 
added to the DC signals via bias tees mounted on the PCB. The output 
of the microwave source (phase, frequency, amplitude and duration) was 
controlled with I/Q vector modulation. The I/Q signals were generated 
with another Tektronix 5041C, which was the master device for the entire 
set-up and provided trigger signals for the other devices. In addition to the 

vector modulation, we used pulse modulation to give an on/off microwave 
power output ratio of 120 dB. Although I/Q modulation can be used to 
output multiple frequencies, the bandwidth of the AWG was not sufficient 
to control both qubits with one microwave source owing to their large 
separation in frequency (1.3 GHz). The sensor current I was converted 
to a voltage signal with a custom-built preamplifier, and an isolation 
amplifier was used to separate the signal ground, with the measurement 
equipment grounded to reduce interference. Following this, a 20-kHz 
Bessel low-pass filter was applied to the signal using a SIM965 analogue 
filter. A field-programmable gate array (FPGA) analysed the voltage signal 
during the readout and assigned the trace to be spin-up if the voltage fell 
below a certain threshold. The voltage signal could also be measured with 
a digitizer card in the computer. The shapes of the pulses generated by the 
AWGs and microwave sources during qubit manipulation, along with the 
typical timescales, are shown in the lower right. Square pulses were used 
to perform the CZ gate and as the input for the I/Q modulation to generate 
microwave pulses. The pulse modulation was turned on 40 ns before 
turning on the I/Q signal, owing to the time needed for the modulation to 
switch on.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Measurement protocol for two electron spins. 
a, Stability diagram of the double quantum dot, showing the positions in 
gate space used to perform single-qubit gates (red circle) and two-qubit 
gates (yellow circle). The map shows the numerically obtained differential 
current dI/dVP1 through the quantum-dot charge sensor as a function of 
the voltages on P1 and P2. The white dashed line is the (1, 1)–(0,2) inter-
dot transition line. The white arrow indicates the detuning axis ε used in 
the experiments. Although the detuning pulse for the two-qubit gate 
crosses the charge-addition lines of D1 and D2, the quantum dots remain 
in the (1, 1) charge state because the pulse time is much shorter than the 
electron tunnel times to the reservoirs. b, Plot of the voltage pulses applied 
to plunger gates P1 and P2 and the response of the quantum-dot charge 
sensor over one measurement cycle. D2 is unloaded by pulsing into the 
(1, 0) charge region for 1.5 ms (purple circle). The electron on D1 is 
initialized to spin-down by pulsing to a spin-relaxation hotspot at the 
(1, 0) and (0, 1) charge degeneracies (orange circle) for 50 μs (see Extended 
Data Fig. 5). D2 is loaded with a spin-down electron by pulsing to the 
readout position for 4 ms (blue circle). During manipulation, the voltages 

on the plunger gates are pulsed to the red circle for single-qubit gates and  
to the yellow circle for two-qubit gates, where the exchange is about  
6 MHz. After manipulation, the spin of the electron on D2 is measured by  
pulsing to the readout position (blue circle) for 0.7 ms, where the Fermi  
level of the reservoir is between the spin-up and spin-down  
electrochemical potentials of D2. If the electron is spin-up then it can  
tunnel out, after which a spin-down electron tunnels back in. These two  
tunnel events are detected by the quantum-dot sensor as a single blip in  
the current signal. An additional 1.3 ms is spent at the readout position so  
that D2 is initialized to spin-down with high fidelity. Following this, Q1 is  
measured by first performing a CROT gate at the yellow circle so that  
α β α β| 〉 + | 〉  → | 〉 + | 〉00 10 00 11CROT12 , where CROT12 indicates a CROT gate  
with Q1 as the control and Q2 as the target. A projective measurement of  
Q1 is then performed by measuring Q2 at the readout position for 0.7 ms 
(blue circle). Finally, we add a compensation pulse to VP1 and VP2 so that 
over the measurement cycle VDC = 0 to mitigate charging effects in the bias 
tees. c, Close-up of the stability diagram in a showing the positions in gate 
space used for initialization and readout.
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Extended Data Figure 3 | Single-qubit properties and two-axis control. 
The purple (top) and orange (bottom) data points correspond to 
measurements performed on Q1 and Q2, respectively, in the (1, 1) regime 
(red circle in Extended Data Fig. 2). a, Spin-up fraction as a function of the 
microwave frequency of an applied π pulse, showing a resonant frequency 
of 18.387 GHz (19.670 GHz) for Q1 (Q2). b, The spin-relaxation time is 
measured by preparing the qubit to spin-up and varying the wait time 
before readout. From the exponential decay in the spin-up probability we 
measure T1 > 50 ms (T1 = 3.7 ± 0.5 ms) for Q1 (Q2). c, Spin-up probability 
as a function of microwave duration, showing Rabi oscillations of 2.0 MHz 
for Q1 and Q2. d, The dephasing time is measured by applying a Ramsey 
pulse sequence and varying the free evolution time τ. Oscillations were 
added artificially to improve the fit of the decay by making the phase of the 

last microwave pulse dependent on the free evolution time, φ = sin(ωτ), 
where ω = 4 MHz. By fitting the data with a Gaussian decay, 

⁎
τ ωτ∝ − /| 〉P Texp[ ( ) ] sin( )1 2

2 , we extract ⁎
= . ± . μT 1 0 0 1 s2   

( ⁎
= . ± . μT 0 6 0 1 s2 ) for Q1 (Q2). In the measurement for Q1, the first π/2 

microwave pulse is a Y gate. The Ramsey measurement was performed 
over about 20 min with the frequency calibrated every approximately 
1 min. e, The coherence time of Q1 (Q2) can be extended to 
T2Hahn = 19 ± 3 μs (T2Hahn = 7 ± 1 μs) by a Hahn echo sequence. The 
coherence time is extracted from an exponential fit to the spin-up 
probability as a function of the free evolution time in the Hahn echo 
sequence. f, Full two-axis control is demonstrated by applying two π/2 
pulses and varying the phase of the second one. All error bars are 1σ from 
the mean.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 4 | Randomized benchmarking of single-qubit 
gates. Randomized benchmarking of the single-qubit gates for each qubit 
is performed by applying a randomized sequence of a varying number of 
Clifford gates m to either the |1〉 or |0〉 state and measuring the final 
spin-up probability ′| 〉P 1  or P|1〉, respectively. All gates in the Clifford group 
are decomposed into gates from the set {I, ±X, ±X2, ±Y, ±Y2}. The purple 
(orange) data points show the difference in the spin-up probabilities 

′ −| 〉 | 〉P P1 1  for Q1 (Q2) as a function of sequence length. For each sequence 
length m we average over 32 different randomized sequences. From an 
exponential fit (solid lines) of the data, ′ − =| 〉 | 〉P P apm1 1 , we estimate 
average Clifford-gate fidelities FC = 1 − (1 − p)/2 of 98.8% and 98.0% for 
Q1 and Q2, respectively. The last three data points from both datasets were 
omitted from the fits because they deviate from a single exponential20. All 
error bars are 1σ from the mean.
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Extended Data Figure 5 | Spin-relaxation hotspots used for high-
fidelity initialization. a, Close-up stability diagram of the (1, 0)–(0, 1) 
charge transition. The white arrow defines the detuning axis between D1 
and D2 controlled with P1. b, Schematic of the energy-level diagram as 
a function of detuning for one electron spin in a double quantum dot. 
c, Spin-relaxation hotspots are measured by preparing the electron on D1 
to spin-up using EDSR, applying a voltage pulse along the detuning axis 
(white arrow in a) for a wait time of 200 ns and performing readout of 
the electron spin. We observe three dips in the spin-up probability, which 
correspond to spin-relaxation hot spots. The first and third hotspot are 
due to anticrossings between the (0, ↓) and (↑, 0) states and the (↓, 0) and 
(0, ↑) states24. The second hotspot occurs at zero detuning. The voltage 
separation between the first and third hot spot corresponds to the sum of 
the Zeeman energy of D1 and D2 divided by the gate lever arm α along 
the detuning axis. Knowing precisely the Zeeman energies from EDSR 
spectroscopy, we can accurately extract the gate lever arm to be α = 0.09e. 
d, The spin-relaxation time at zero detuning (orange circle in a) is found 
to be T1 = 220 ns by measuring the exponential decay of the spin-up 
probability as a function of wait time τ at zero detuning. All error bars are 
1σ from the mean.
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Extended Data Figure 6 | Two-qubit CROT gate. a, Microwave 
spectroscopy of Q2 close to zero detuning between the (1, 1) and (0, 2) 
states (yellow dot in Extended Data Fig. 2a) with the exchange coupling on. 
The blue and red curves show the resonance of Q2 after preparing Q1 into 
spin-down and spin-up, respectively. The resonance frequency of Q2 shifts 
by the exchange coupling, and by applying a π pulse at one of these 
frequencies we can perform a CROT gate, which is equivalent to a CNOT 
gate up to a ẑ  rotation. As discussed in the main text, this CROT gate is 
used to perform the projective measurement of Q1. All error bars are 1σ 
from the mean.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 7 | Measurement of Joff using a decoupling 
sequence. The exchange coupling Joff during single-qubit gates is measured 
using a two-qubit Hahn echo sequence, which cancels out any 
unconditional ẑ  rotations during the free evolution time τ. Fitting the 
spin-up probability as a function of free evolution time τ using the 
functional form sin(2πJoffτ), we extract Joff = 270 kHz. All error bars are 1σ 
from the mean.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Letter reSeArCH

01

00

11

10

cPup Pupa b

-1.5 -1 -0.5 0
Detuning, ε, (meV)

19.75

19.76

19.77

19.78

19.79

Fr
eq

ue
nc

y 
(G

H
z)

0.3

0.4

0.5

0.6

-1.5 -1 -0.5 0
Detuning, ε, (meV)

18.42

18.44

18.46

18.48
Fr

eq
ue

nc
y 

(G
H

z)

0.2

0.25

0.3

0.35

0.4

01→11

00→10

10→11

00→01

Extended Data Figure 8 | Microwave spectroscopy of Q1 and Q2.  
a, b, Spectroscopy of Q1 (a) and Q2 (b) versus detuning energy ε after 
initializing the other qubit to + /( 0 1 ) 2 . Towards ε = 0 there are two 
resonances each for Q1 and Q2, which are separated by the exchange 
energy J(ε)/h. As discussed, the Zeeman energy EZ(ε) of Q1 and Q2 also 
depends on detuning because changes to the applied voltages shift the 
position of the electron in the magnetic-field gradient. The four resonance 
frequencies are fitted (green, blue, red and yellow lines) with 

fjk = EZj(ε) + (−1)k+1J(ε), where j denotes the qubit and k denotes the state 
of the other qubit. The data are fitted well using ε ∝ εJ( ) ec1 , ε ∝ εE ( ) ecZ1 2 , 
and EZ2(ε) ∝ ε. The fitted Zeeman energies of Q1 and Q2 are shown by the 
black lines. We observe that the Zeeman energy of Q1 has an exponential 
dependence towards the (0, 2) charge regime (ε = 0). This observation can 
be explained by the electron delocalizing from D1 towards D2, which has a 
much higher Zeeman energy. c, Schematic of the colour-coded transitions 
that correspond to the resonances in a and b.
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Extended Data Figure 9 | Decay of the decoupled CZ oscillations. The 
normalized spin-up probability of Q1 as a function of the total duration 
time 2τ of the two CZ gates in the DCZ sequence. The data are fitted using 
a sinusoid, P|1〉 = 0.5sin(2πJτ) + 0.5, with either a Gaussian (black line; 

τ− /e T(2 )2 2) or exponential (red line; τ− /e T2 2) decay. From these fits we find a 
decay time of T2 = 1.6 μs. All error bars are 1σ from the mean.
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Extended Data Figure 10 | Simulation of the Deutsch–Josza and Grover 
search algorithms using the DCZ gate. a, b, Two-spin probabilities as a 
function of the sequence time during the Deutsch–Josza algorithm (a) and 
the Grover search algorithm (b) for each function, using the decoupled 

version of the two-qubit CZ gate (the DCZ gate). The solid lines show the 
outcome of the simulations, which include decoherence due to quasi-static 
charge noise and nuclear-spin noise. All error bars are 1σ from the mean.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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