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With qubit measurement and control fidelities
above the threshold of fault-tolerance, much at-
tention is moving towards the daunting task of
scaling up the number of physical qubits to the
large numbers needed for fault tolerant quantum
computing [1, 2]. Here, quantum dot based spin
qubits may offer significant advantages due to
their potential for high densities, all-electrical op-
eration, and integration onto an industrial plat-
form [3–5]. In this system, the initialisation,
readout, single- and two-qubit gates have been
demonstrated in various qubit representations [6–
9]. However, as seen with other small scale quan-
tum computer demonstrations [10–13], combin-
ing these elements leads to new challenges in-
volving qubit crosstalk, state leakage, calibration,
and control hardware which provide invaluable in-
sight towards scaling up. Here we address these
challenges and demonstrate a programmable two-
qubit quantum processor in silicon by performing
both the Deutsch-Josza and the Grover search al-
gorithms. In addition, we characterise the entan-
glement in our processor through quantum state
tomography of Bell states measuring state fideli-
ties between 85-89% and concurrences between
73-80%. These results pave the way for larger
scale quantum computers using spins confined to
quantum dots.

Solid-state approaches to quantum computing are chal-
lenging to realise due to unwanted interactions between
the qubit and the host material. For quantum dot based
qubits, charge and nuclear spin noise are the dominant
sources of decoherence and gate errors. While some
of these effects can be cancelled out by using dynam-
ical decoupling [14, 15] or decoherence-free subspaces
[7, 9, 16], there has also been significant progress in re-
ducing these noise sources through growing better ox-
ides and heterostructures [17] and moving to silicon (Si)
due to its naturally low abundance of nuclear spin iso-
topes which can be removed through isotopic purification
[18]. These material developments have dramatically ex-
tended qubit coherence times enabling single-qubit gate
fidelities above 99% [19–22] and recently resulted in the
demonstration of a controlled phase (CZ) gate between
two single electron spin qubits in a silicon metal-oxide-
semiconductor (Si-MOS) device [8]. Here, we show that
with two single electron spin qubits in a silicon/silicon-

germanium (Si/SiGe) double quantum dot (DQD), we
can combine initialisation, readout, single- and two-qubit
gates to form a programmable quantum processor in sil-
icon that can perform simple quantum algorithms.

A schematic of the two-qubit quantum processor is
shown in Fig. 1(a). The device is similar to that de-
scribed in [23] except for an additional micromagnet. A
two-dimensional electron gas (2DEG) is formed in the
natural Si quantum well of a SiGe heterostructure us-
ing two accumulation gates. The DQD is defined in
the 2DEG by applying negative voltages to the deple-
tion gates with the estimated position of the first (D1)
and second (D2) quantum dot shown by the blue and red
circle, respectively. The two qubits, Q1 and Q2, are de-
fined by applying a finite magnetic field ofBext = 617 mT
and using the Zeeman-split spin-down |0〉 and spin-up |1〉
states of single electrons respectively confined in D1 and
D2. The initialisation and readout of Q2 is performed
by spin-selective tunnelling to a reservoir [24] while Q1
is initialised at a spin relaxation hotspot [25] and mea-
sured via Q2 using a controlled rotation (CROT). The
complete measurement sequence and setup are described
in Extended Data Fig. 1,2 where we achieve initialisa-
tion and readout fidelities of FI1 > 99%, FI2 > 99%,
Fm1 = 73%, and Fm2 = 81% (see methods). These fideli-
ties are mostly limited by the fast spin relaxation time of
Q2 (T1 = 3.7 ms) and the broadening of the Fermi level
due to a finite electron temperature of Te ≈ 130 mK.

The coherent individual control of both qubits is
achieved by patterning three cobalt micromagnets on top
of the device (see Fig. 1(a)). These micromagnets pro-
vide a magnetic field gradient with a component that
is perpendicular to the external magnetic field for elec-
tric dipole spin resonance (EDSR) [26]. Furthermore,
the field gradient across the two dots results in qubit
frequencies that are well separated (fQ1 = 18.4 GHz,
fQ2 = 19.7 GHz), allowing the qubits to be addressed
independently. For both qubits, we achieve Rabi fre-
quencies of fR = wR/2π = 2.5 MHz and perform single
qubit X and Y gates by using vector modulation of the
microwave (MW) drive signals. Here, we define an X
(Y) gate to be a π/2 rotation around x̂ (ŷ) and hence-
forth define a π rotation to be X2 (Y 2). We measure the
qubit properties of Q1 (Q2) in the (1,1) regime (where
(m,n) denotes a configuration with m electrons in D1
and n electrons in D2) to be T1 > 50 ms (3.7± 0.5 ms),
T ∗2 = 1.0 ± 0.1 µs (0.6 ± 0.1 µs), T2Hahn = 19 ± 3 µs
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FIG. 1. Two-qubit quantum processor in silicon. (a) Schematic of a Si/SiGe double quantum dot device showing the
estimated position of quantum dots D1 (purple circle) and D2 (orange circle) used to confine two electron spin qubits Q1 and
Q2, respectively. Both quantum dots were formed on the right side of the device to achieve an interdot tunnel coupling suitable
for two-qubit gates. The ellipse shows the position of the QD sensor used for spin readout. Microwave signals MW1 and MW2
are use perform EDSR on Q1 and Q2, respectively, while voltage pulses are applied to plunger gates P1 and P2 for qubit
manipulation and readout. (b) Energy level diagram of two electron spins in a double quantum dot as a function of the energy
detuning, ε, between the (1,1) and (0,2) charge states. (c) Microwave spectroscopy of Q2 versus detuning after initialisation of
Q1 to (|0〉+ |1〉)/

√
2. The map shows that Q2 has two different resonant frequencies (blue arrows in (b)) depending on the spin

state of Q1, which are separated by the exchange energy, J . (d) The spin-up probability of Q2 as a function of the detuning
pulse duration in a Ramsey sequence with the control Q1 initialised to spin-down (blue curve) and spin-up (red curve). (e-f)
Calibration of the ẑ rotations on Q1 and Q2 needed to form the CZij gates are performed by using a Ramsey sequence and
varying the phase of the last π/2 pulse. Here the spin-up probability has been normalised to remove initialisation and readout
errors and the exchange energy is J/h = 10 MHz. (g,h) A decoupled version of the CZ gate removes the unconditional ẑ
rotations due to the detuning dependence on EZ(ε). Consequently, the required ẑ rotations to form the CZij gates (dashed
black lines) are always at 90◦ and 270◦, simplifying calibration. All error bars are 1σ from the mean calculated from a Monte
Carlo estimation (see methods).

(7±1 µs) (see Extended Data Fig. 3). Using single qubit
randomised benchmarking [21, 27] we find an average
Clifford gate fidelity of 98.8% for Q1 and 98.0% for Q2
(see Extended Data Fig. 4) which are close to the fault
tolerant error threshold for surface codes [28].

Universal quantum computing requires the implemen-
tation of both single- and two-qubit gates. In this
quantum processor we implement a two-qubit controlled-
phase (CZ) gate [8, 29]. This gate can be understood
by considering the energy level diagram for two electron
spins in a double quantum dot, shown in Fig. 1(b), in
the regime where the Zeeman energy difference is com-
parable to the interdot tunnel coupling, δEZ ∼ tc. The
energies of the (1,1) spin states (|00〉, |01〉, |10〉, |11〉) and
the S(0,2) singlet state are plotted as a function of the
detuning, ε, between the (1,1) and (0,2) charge states of
the DQD, controlled with the voltage applied to gate P1
(see Extended Data Fig. 2). The anticrossing between

the S(0,2) and the antiparallel (1,1) states causes the en-
ergy of the antiparallel states to decrease by J(ε)/2 as
the detuning is decreased (see Fig. 1(b)), where J(ε) is
the exchange coupling between the two electron spins.

The energy structure of the two-electron system can
be probed by performing MW spectroscopy as a function
of detuning as shown in Fig. 1(c). At negative detun-
ing, the resonance frequency (Zeeman energy) increases
linearly (dashed line) due to the electron wavefunction
moving in the magnetic field gradient. At more positive
detuning closer to the (0,2) regime, the exchange energy
is significant compared to the linewidth of the resonance
J/h > ωR, resulting in two clear resonances. Applying a
π pulse at one of these frequencies results in a CROT gate
which is used to perform the projective measurement of
Q1 via the readout of Q2 (see Extended Data Fig. 6).

The CZ gate is implemented by applying a detuning
pulse for a fixed amount of time, t, which shifts the en-
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ergy of the antiparallel states. Throughout the pulse,
we stay in the regime where J(ε)� ∆Ez, so the energy
eigenstates of the system are still the two-spin product
states and the two-qubit interaction can be approximated
by an Ising Hamiltonian, leading to the following unitary
operation,

UCZ(t) = Z1(θ1)Z2(θ2)


1 0 0 0
0 eiJ(ε)t/2~ 0 0
0 0 eiJ(ε)t/2~ 0
0 0 0 1

 ,(1)

where the basis states are |00〉, |01〉, |10〉, and, |11〉,
and Z1(θ1) and Z2(θ2) are rotations around ẑ caused
by the change in the Zeeman energy of the qubits due
to the magnetic field gradient. The CZ gate is advan-
tageous over the CROT as it is faster and less time is
spent at low detuning, where the qubits are more sensi-
tive to charge noise. In addition, we observed that per-
forming the CROT with EDSR can lead to state leak-
age into the S(0,2) state, seen in Fig. 1(c) by the in-
crease in background dark counts near ε = 0. The
CZ gate is demonstrated in Fig. 1(d); the duration
of a CZ voltage pulse between two X gates on Q2 in
a Ramsey experiment is varied, showing that the fre-
quency of the ẑ rotation on Q2 is conditional on the
spin state of Q1. The processor’s primitive two-qubit
gates, CZij |m,n〉 = (−1)δ(i,m)δ(j,n) |m,n〉 for i, j,m, n ∈
{0, 1}, are constructed by applying the CZ gate for a
time t = π~/J followed by ẑ rotations on Q1 and Q2,
CZij = Z1((−1)jπ/2−θ1)Z2((−1)iπ/2−θ2)UCZ(π~/J).
Rather than physically performing the ẑ rotations, we
use a software reference frame change where we incorpo-
rate the rotation angle θ1 and θ2 into the phase of any
subsequent MW pulses [30].

Combining single- and two-qubit gates together with
initialisation and readout, we demonstrate a pro-
grammable processor — where we can program arbi-
trary sequences for the two-qubit chip to execute within
the coherence times of the qubits. To achieve this, a
number of challenges needed to be overcome. The de-
vice had to be further tuned so that during single-qubit
gates the exchange coupling was low, Joff /h = 0.27 MHz
(see Extended Data Fig. 7), compared to our single-
qubit gate times (∼ 2 MHz) and two-qubit gate times
(∼ 6 − 10 MHz). Tuning was also required to raise the
energy of low-lying valley-excited states to prevent them
from being populated during initialisation [23]. Further-
more, we observed that applying MW pulses on Q1 shifts
the resonance frequency of Q2 by ∼ 2 MHz. We rule out
the AC Stark shift, effects from coupling between the
spins, and heating effects as possible explanations but
find the quantum dot properties affect the frequency shift
(see supplementary information S1). While the origin of
the shift is unknown, we keep the resonance frequency
of Q2 fixed during single-qubit gates by applying an off-
resonant pulse (30 MHz) to Q1 if Q1 is idle.

Before running sequences on the quantum processor,
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FIG. 2. Preparation of the Bell states and two-
qubit entanglement in silicon. (a) The quantum cir-
cuit used to prepare the Bell states and perform quantum
state tomography. (b-e) The real component of the recon-
structed density matrices using a maximum likelihood esti-
mation for the four Bell states (b) Ψ+ = (|01〉 + |10〉)/

√
2,

(c) Ψ− = (|01〉 − |10〉)/
√

2, (d) Φ+ = (|00〉 + |11〉)/
√

2,
(e) Φ− = (|00〉 − |11〉)/

√
2. We measure state fidelities of

FΨ+ = 0.88 ± 0.02, FΨ− = 0.88 ± 0.02, FΦ+ = 0.85 ± 0.02,
FΦ− = 0.89 ± 0.02 and concurrences of cΨ+ = 0.79 ± 0.03,
cΨ− = 0.80± 0.03, cΦ+ = 0.73± 0.03, cΦ− = 0.79± 0.03. All
errors are 1σ from the mean.

all gates need to be properly calibrated. The single-qubit
X and Y gates were calibrated using both a Ramsey se-
quence and the AllXY calibration sequence [31] to deter-
mine the qubit resonance frequency and the power needed
to perform a π/2 gate. To calibrate the CZij gates we
performed the Ramsey sequence in Fig. 1(e) and varied
the phase of the last π/2 gate. Fig. 1(e) shows the re-
sults of this measurement where Q1 is the target qubit
and the control qubit Q2 is either prepared in |0〉 (blue
curve) or |1〉 (red curve). The duration of the CZ gate
is calibrated so that the blue and red curve are 180◦ out
of phase. These measurements also determine the ẑ ro-
tation on Q1 needed to form CZij , which corresponds
to the phase of the last π/2 gate which either maximises
or minimises the Q2 spin-up probability (dashed lines in
Fig. 1(e)). The ẑ rotation needed for Q2 is calibrated by
performing a similar measurement, where the roles of Q1
and Q2 are switched (Fig. 1(f)).

The ẑ rotations in Eq. 1 can be elimi-
nated by using a decoupled CZ gate DCZ =
UCZ(π~/2J)X2

1X
2
2UCZ(π~/2J) which can be

used to perform DCZij = X2
1X

2
2CZij =

Z1((−1)jπ/2)Z2((−1)iπ/2)DCZ. This is demon-
strated in the Ramsey experiment in Fig. 1(g,h), where
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(b) Grover search algorithm for two qubits. (c,d) Two-spin probabilities as a function of time throughout the sequence during
the (c) Deutsch-Josza algorithm and the (d) Grover search algorithm for each of four possible functions. Each point corresponds
to 2500 repetitions and has been normalised to remove initialisation and readout errors. The dashed lines are the simulated
ideal cases with no decoherence. For both algorithms, the square data points show the final results of the algorithms where all
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1X
4
2 (diamond data points). All error bars are 1σ from the

mean.

the minimum and maximum spin-up probabilities occur
at a phase of either 90◦ or 270◦. In addition to removing
the need to calibrate the required ẑ rotations, this
gate is advantageous as it cancels out the effect of low
frequency noise that couples to the spins via σZ ⊗ I and
I ⊗ σZ terms during the gate.

After proper calibration, we can characterise entangle-
ment in our quantum processor by preparing Bell states
and reconstructing the two-qubit density matrix using
quantum state tomography. The quantum circuit for the
experiment is shown in Fig. 2(a). The Bell states are
prepared using a combination of single-qubit gates and
the decoupled two-qubit DCZij gates. The density ma-
trix is reconstructed by measuring two-spin probabilities
for the 9 combinations of 3 different measurement bases
(x,y,z) with 10,000 repetitions. In our readout scheme the
states are projected into the z-basis while measurements
in the other bases are achieved by performing X and Y
pre-rotations. Due to the time needed to perform these
measurements (∼ 2 hrs) the frequency of the qubits was
calibrated after every 100 repetitions. The real compo-
nents of the reconstructed density matrices of the four
Bell states (1/

√
2(|00〉 ± |11〉), 1/

√
2(|01〉 ± |10〉)) are

shown in Fig. 2(b-e). The state fidelities, F = 〈ψ| ρ |ψ〉,
between these density matrices and the target Bell states
range between 85-89% and the concurrences range be-
tween 73-80%, demonstrating entanglement.

To test the programmability of the two-qubit quan-
tum processor we perform the Deutsch-Josza [32] and the
Grover search [33] quantum algorithms. The Deutsch-
Josza algorithm determines whether a function is con-
stant (f1(0) = f1(1) = 0 or f2(0) = f2(1) = 1) or bal-
anced (f3(0) = 0, f3(1) = 1 or f4(0) = 1, f4(1) = 0).
These four functions are mapped onto the following uni-
tary operators, Uf1 = I, Uf2 = X2

2 , Uf3 = CNOT =
Y2CZ11Y 2, Uf4 = Z-CNOT = Y 2CZ00Y2 where the
overline denotes a negative rotation. For both the con-
trolled NOT (CNOT) and the zero-controlled NOT (Z-
CNOT) the target qubit is Q2. At the end of the se-
quence the input qubit (Q1) will be either |0〉 or |1〉
for the constant and balanced functions, respectively.
Grover’s search algorithm provides an optimal method
for finding the unique input value x0 of a function f(x)
that gives f(x0) = 1 where f(x) = 0 for all other val-
ues of x. In the two-qubit version of this algorithm
there are four input values, x ∈ {00, 01, 10, 11}, result-
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ing in four possible functions, fij(x) where i, j ∈ {0, 1}.
These functions are mapped onto the unitary operators,
CZij |x〉 = (−1)fij(x) |x〉, which mark the input state
with a negative phase if fij(x) = 1. The algorithm finds
the state that has been marked and outputs it at the end
of the sequence.

Fig. 3 shows the measured two-spin probabilities as a
function of time during the algorithms for each function.
The experimental results (circles) are in good agreement
with the simulated ideal cases (dashed lines). Although a
number of repetitions are needed due to gate and readout
errors, the algorithms are successful at determining the
balanced and constant functions and finding the marked
state in the oracle functions. The square data points are
taken shortly after calibration and are in line with the cir-
cle data points, indicating that calibrations remain sta-
ble throughout the hour of data collection for the main
panels. In most cases, the diamond data points also give
similar values to the circles, which means that the decou-
pled CZ gate does not improve the final result. This sug-
gests that low-frequency single-qubit noise during the CZ
gate is not dominant. The substantial difference between
Hahn echo and Ramsey decay times still points at sig-
nificant low-frequency noise. Single-qubit low-frequency
noise, whether from nuclear spins or charge noise, reduces
single-qubit coherence in particular during wait and idle
times in the algorithms. Additionally charge noise affects
the coupling strength J during the CZ gates. Numeri-
cal simulations show that quasi-static nuclear spin noise
and charge noise can reproduce most features seen in the
two-qubit algorithm data (see Extended Data Fig. S6).
Smaller error contributions include residual coupling dur-
ing single-qubit operations and miscalibrations.

Significant improvements could be made in the per-
formance of the processor by using isotopically purified
28Si [19, 20, 22], which would increase the qubit coher-
ence times. Furthermore, recent experiments have shown
that symmetrically operating an exchange gate by puls-
ing the tunnel coupling rather than detuning leads to a
gate which is less sensitive to charge noise, significantly
improving fidelities [34, 35]. With these modest improve-
ments combined with more reproducible and scalable de-
vice structures, quantum computers with multiple qubits
and fidelities above the fault tolerant threshold should be
realisable.
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 L. Cywiński, M. S. Rudner, S. Fallahi, G. C. Gardner,
M. J. Manfra, C. M. Marcus, and F. Kuemmeth, “Notch
filtering the nuclear environment of a spin qubit,” Nat.
Nanotechnol. 12, 16–20 (2017).

[16] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird,
A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson,
and A. C. Gossard, “Coherent manipulation of coupled
electron spins in semiconductor quantum dots,” Science
309, 2180–2184 (2005).

[17] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Sim-
mons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N.
Coppersmith, and M. A. Eriksson, “Silicon quantum
electronics,” Rev. Mod. Phys. 85, 961–1019 (2013).

[18] A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann,
N. V. Abrosimov, P. Becker, H. J. Pohl, T. Schenkel,
M. L. W. Thewalt, K. M. Itoh, and S. A. Lyon, “Electron
spin coherence exceeding seconds in high-purity silicon,”
Nat. Mater. 11, 143–147 (2012).

[19] M. Veldhorst, J. J. C. Hwang, C. H. Yang, A. W. Leen-
stra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E.
Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak,
“An addressable quantum dot qubit with fault-tolerant
control-fidelity,” Nat Nano 9, 981–985 (2014).

[20] J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hud-
son, R. Kalra, T. Sekiguchi, K. M. Itoh, D. N. Jamieson,
J. C. McCallum, A. S. Dzurak, and A. Morello, “Storing
quantum information for 30 seconds in a nanoelectronic
device,” Nat. Nanotechnol. 9, 986–991 (2014).

[21] E. Kawakami, T. Jullien, P. Scarlino, D. R. Ward, D. E.
Savage, M. G. Lagally, V. V. Dobrovitski, Mark Friesen,
S. N. Coppersmith, M. A. Eriksson, and L. M. K. Van-

dersypen, “Gate fidelity and coherence of an electron spin
in an Si/SiGe quantum dot with micromagnet,” Proc.
Natl. Acad. Sci. 113, 11738–11743 (2016).

[22] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R.
Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda,
Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha,
“A >99.9%-fidelity quantum-dot spin qubit with coher-
ence limited by charge noise,” ArXiv e-prints (2017),
arXiv:1708.01454 [cond-mat.mes-hall].

[23] E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman,
D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Cop-
persmith, M. A. Eriksson, and L. M. K Vandersypen,
“Electrical control of a long-lived spin qubit in a Si/SiGe
quantum dot,” Nat. Nanotechnol. 9, 666–670 (2014).

[24] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren,
B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwen-
hoven, “Single-shot read-out of an individual electron
spin in a quantum dot,” Nature 430, 431–435 (2004).

[25] V. Srinivasa, K. C. Nowack, M. Shafiei, L. M. K. Van-
dersypen, and J. M. Taylor, “Simultaneous spin-charge
relaxation in double quantum dots,” Phys. Rev. Lett.
110, 196803 (2013).

[26] M. Pioro-Ladriere, T. Obata, Y. Tokura, Y.-S. Shin,
T. Kubo, K. Yoshida, T. Taniyama, and S. Tarucha,
“Electrically driven single-electron spin resonance in a
slanting Zeeman field,” Nat. Phys. 4, 776–779 (2008).

[27] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B.
Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Sei-
delin, and D. J. Wineland, “Randomized benchmarking
of quantum gates,” Phys. Rev. A 77, 012307 (2008).

[28] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.
Cleland, “Surface codes: Towards practical large-scale
quantum computation,” Phys. Rev. A 86, 032324 (2012).

[29] T. Meunier, V. E. Calado, and L. M. K. Vandersypen,
“Efficient controlled-phase gate for single-spin qubits in
quantum dots,” Phys. Rev. B 83, 121403 (2011).

[30] L. M. K. Vandersypen and I. L. Chuang, “NMR tech-
niques for quantum control and computation,” Rev. Mod.
Phys. 76, 1037–1069 (2005).

[31] M. D. Reed, Entanglement and Quantum Error Correc-
tion with Superconducting Qubits, Ph.D. thesis, Yale Uni-
versity (2014).

[32] D. Deutsch and R. Jozsa, “Rapid solution of problems by
quantum computation,” Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering
Sciences 439, 553–558 (1992).

[33] L. K. Grover, “Quantum mechanics helps in searching
for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328
(1997).

[34] M. D. Reed, B. M. Maune, R. W. Andrews, M. G.
Borselli, K. Eng, M. P. Jura, A. A. Kiselev, T. D. Ladd,
S. T. Merkel, I. Milosavljevic, E. J. Pritchett, M. T.
Rakher, R. S. Ross, A. E. Schmitz, A. Smith, J. A.
Wright, M. F. Gyure, and A. T. Hunter, “Reduced
sensitivity to charge noise in semiconductor spin qubits
via symmetric operation,” Phys. Rev. Lett. 116, 110402
(2016).

[35] F. Martins, F. K. Malinowski, P. D. Nissen, E. Barnes,
S. Fallahi, G. C. Gardner, M. J. Manfra, C. M. Marcus,
and F. Kuemmeth, “Noise suppression using symmetric
exchange gates in spin qubits,” Phys. Rev. Lett. 116,
116801 (2016).

[36] D. F. V. James, P. G. Kwiat, W. J. Munro, and
A. G. White, “Measurement of qubits,” Phys. Rev. A
64, 052312 (2001).

http://dx.doi.org/10.1038/nature15263
http://dx.doi.org/10.1038/nature15263
http://dx.doi.org/10.1038/nnano.2013.168
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature01336
http://dx.doi.org/10.1038/nature01336
http://dx.doi.org/10.1038/nature10900
http://dx.doi.org/10.1038/nphys1856
http://dx.doi.org/10.1038/nnano.2016.170
http://dx.doi.org/10.1038/nnano.2016.170
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/ 10.1103/RevModPhys.85.961
http://dx.doi.org/10.1038/nmat3182
http://dx.doi.org/10.1038/nnano.2014.216
http://dx.doi.org/10.1038/nnano.2014.211
http://dx.doi.org/ 10.1073/pnas.1603251113
http://dx.doi.org/ 10.1073/pnas.1603251113
http://arxiv.org/abs/1708.01454
http://dx.doi.org/10.1038/nnano.2014.153
http://dx.doi.org/10.1038/nature02693
http://dx.doi.org/ 10.1103/PhysRevLett.110.196803
http://dx.doi.org/ 10.1103/PhysRevLett.110.196803
http://dx.doi.org/10.1038/nphys1053
http://dx.doi.org/ 10.1103/PhysRevA.77.012307
http://dx.doi.org/ 10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevB.83.121403
http://dx.doi.org/ 10.1103/RevModPhys.76.1037
http://dx.doi.org/ 10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/ 10.1103/PhysRevLett.79.325
http://dx.doi.org/ 10.1103/PhysRevLett.79.325
http://dx.doi.org/ 10.1103/PhysRevLett.116.110402
http://dx.doi.org/ 10.1103/PhysRevLett.116.110402
http://dx.doi.org/10.1103/PhysRevLett.116.116801
http://dx.doi.org/10.1103/PhysRevLett.116.116801
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevA.64.052312


7

[37] S. Das Sarma, Xin Wang, and Shuo Yang, “Hubbard
model description of silicon spin qubits: Charge stability
diagram and tunnel coupling in si double quantum dots,”
Phys. Rev. B 83, 235314 (2011).

METHODS

Estimation of initialisation and readout errors for
Q1 and Q2. The initialisation and readout procedures
for Q1 and Q2 are described in the Extended Data Fig. 2.
The initialisation and readout fidelities of Q2 were ex-
tracted by performing the following three experiments
and measuring the resulting spin-up probabilities (P1,
P2, P3): (i) Initialise Q2 and wait 7T1. (ii) Initialise Q2.
(iii) Initialise and perform a π rotation on Q2. These
three spin-up probabilities are related to the initialisa-
tion fidelity (γ2) and the spin-up and spin-down readout
fidelities (F↓2, F↑2) by,

P1 = 1− F↓2, (1)

P2 = F↑2(1− γ2) + (1− F↓2)γ2, (2)

P3/Pπ2 = F↑2(γ2) + (1− F↓2)(1− γ2), (3)

where Pπ2 is the expected probability to be in the up
state after the application of the π pulse for Q2, which is
determined as described below. In Eq. 3 we assume that
waiting 7T1 leads to 100% initialisation and the mea-
sured spin-up counts are due to the readout infidelity.
By solving these three equations we can extract the ini-
tialisation and readout fidelities. For Q1, we performed
initialisation by pulsing to a spin relaxation hotspot (see
Extended Data Fig. 5) for 500T1 and therefore we as-
sume the initialisation fidelity is ∼100%. Consequently,
the readout fidelities of Q1 were extracted by only per-
forming experiments (ii) and (iii) above. The readout
and initialisation fidelities for Q1 (Q2) during the state
tomography experiments were estimated to be γ1 > 99%
(γ2 > 99%), F↓1 = 92% (F↓2 = 86%), and F↑1 = 54%
(F↑2 = 76%) where we used Pπ1 = 98% (Pπ2 = 98%)
based on simulations which include the dephasing time
of the qubits (see supplementary information).
Removing readout errors from the measured two-
spin probabilities. In the experiment the measured
two-spin probabilities PM = (PM|00〉, P

M
|01〉, P

M
|10〉, P

M
|11〉)

T

include errors due to the limited readout fidelity F↓i and
F↑i, of a ↓ and ↑ electron for qubit i. To remove these
readout errors to get the actual two-spin probabilities,
P = (P|00〉, P|01〉, P|10〉, P|11〉)

T , we use the following rela-
tionship,

PM = (F̂1 ⊗ F̂2)P (4)

where,

F̂i =

(
F↓i 1− F↑i

1− F↓i F↑i

)
. (5)

State tomography The density matrix of a two-qubit

state can be expressed as ρ =
16∑
i=1

ciMi where Mi are

16 linearly independent measurement operators. The co-
efficients ci were calculated from the expectation values,
mi, of the measurement operators using a maximum like-
lihood estimation [11, 36]. The expectation values were
calculated by performing 16 combinations of I,X, Y,X2

prerotations on Q1 and Q2 and measuring the two-spin
probabilities over 10,000 repetitions per measurement.
For the calculation of the density matrices in Fig. 2 we
only used the data from the I,X, Y prerotations with
the assumption that I will give a more accurate estima-
tion of the expectation values than X2 due to gate infi-
delities. If we include the X2 we achieve state fidelities
between 80 − 85% and concurrences between 68 − 71%
(see supplementary materials). In the analysis we as-
sume the prerotations are perfect which is a reasonable
approximation due to the high single-qubit Clifford gate
fidelities > 98% compared to the measured state fidelities
85 − 89%. The two-spin probabilities were converted to
actual probabilities by inverting Eq. 5. The state tomog-
raphy experiment was performed in parallel with both
the fidelity experiments described above and a Ramsey
experiment used to actively calibrate the frequency.
Error analysis. Error analysis was performed through-
out the manuscript using a Monte Carlo method by as-
suming a multinomial distribution for the measured two-
spin probabilities and a binomial distribution for the
probabilities (P1, P2, P3) used to calculated the fidelities.
Values from these distributions were randomly sampled
and the procedures from above were followed. This was
repeated 250 times to build up a final distributions which
we use to determine the mean values and the standard
deviation.

http://dx.doi.org/10.1103/PhysRevB.83.235314
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Extended Data Fig. 1. Schematic of the measurement setup. The sample was bonded to a printed circuit board (PCB)
mounted onto the mixing chamber of a dilution refrigerator. All measurements were performed at the base temperature of the
fridge, Tbase ∼ 20 mK. DC voltages are applied to all the gate electrodes using room temperature (RT) DACs via filtered lines
(not shown). Voltage pulses are applied to plunger gates P1 and P2 using a Tektronix 5014C arbitrary waveform generator
(AWG) with 1 GHz clock rate. The signals from the AWG’s pass through a RT low-pass filter and attenuators at different
stages of the fridge and are added to the DC signals via bias tees mounted on the PCB. Two Keysight E8267D vector microwave
sources, MW1 and MW2, are used to apply microwaves (18 − 20 GHz) to perform EDSR on Q1 and Q2, respectively. The
signals pass through RT DC blocks, homemade 15 GHz high-pass filters, and attenuators at different stages of the fridge and
are added to the DC signals via bias tees mounted on the PCB. The output of the MW source (phase, frequency, amplitude,
duration) is controlled with I/Q vector modulation. The I/Q signals are generated with another Tektronix 5041C which is the
master device for the entire setup and provides trigger signals for the other devices. In addition to the vector modulation we
employ pulse modulation to give an on/off microwave power output ratio of 120 dB. While I/Q modulation can be used to
output multiple frequencies, the bandwidth of the AWG was not enough to control both qubits with one microwave source
due to their large separation in frequency (1.3 GHz). The sensor current, I, is converted to a voltage signal with a homebuilt
preamplifier and an isolation amplifier is used to separate the signal ground with the measurement equipment ground to reduce
interference. Following this, a 20 kHz Bessel low-pass filter is applied to the signal using a SIM965 analog filter. An FPGA
analyses the voltage signal during the readout and assigns the trace to be spin-up if the voltage falls below a certain threshold.
The voltage signal can also be measured with a digitizer card in the computer. Square pulses were used to perform the CZ
gate and as the input for the I/Q modulation to generated MW pulses.
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Extended Data Fig. 2. Measurement protocol for two electron spins. (a) Stability diagram of the double quantum dot
showing the positions in gate space used to perform single qubit gates (red circle) and the two-qubit gates (yellow circle). The
white dashed line is the (1,1)-(0,2) polarisation line. The white arrow indicates the detuning axis, ε, used in the experiments.
Although the detuning pulse for the two-qubit gate crosses the charge addition lines of D1 and D2, the quantum dots remain
in the (1,1) charge state as the pulse time is much shorter than the electron tunnel times to the reservoirs. (b) Plot of the
voltage pulses applied to plunger gates P1 and P2 and the response of the quantum dot charge sensor over one measurement
cycle. Firstly, D2 is unloaded by pulsing into the (1,0) charge region for 1.5 ms (purple circle). The electron on D1 is initialised
to spin-down by pulsing to a spin relaxation hotspot at the (1,0) and (0,1) charge degeneracy (orange circle) for 50 µs (see
Extended Data Fig. 5). D2 is loaded with a spin-down electron by pulsing to the readout position for 4 ms (blue circle). During
manipulation, the voltages on the plunger gates are pulsed to the red circle for single-qubit gates and to the yellow circle for
two qubit gates where the exchange is ∼ 6 MHz. After manipulation, the spin of the electron on D2 is measured by pulsing
to the readout position (blue circle) for 0.7 ms where the Fermi level of the reservoir is between the spin-up and spin-down
electrochemical potentials of D2. If the electron is spin-up it can tunnel out followed by a spin-down electron tunnelling back
in. These two tunnel events are detected by the QD sensor as a single blip in the current signal. An additional 1.3 ms is
spent at the readout position so that D2 is initialised to spin-down with high fidelity. Following this, Q1 is measured by first

performing a CROT at the yellow circle so that α |00〉+β |10〉 CROT12−−−−−−→ α |00〉+β |11〉. A projective measurement of Q1 is then
performed by measuring Q2 at the readout position for 0.7 ms (blue circle). Finally, we add a compensation pulse to VP1 and
VP2 so that over the measurement cycle VDC = 0 to mitigate charging effects in the bias tees. (b) Close-up of the stability
diagram in (a) showing the positions in gate-space used for initialisation and readout.
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Extended Data Fig. 3. Single qubit properties and two-axis control. The purple (top) and orange (bottom) data
correspond to measurements performed on Q1 and Q2, respectively, in the (1,1) regime (red circle in Extended Figure 2.
(a) Spin-up fraction as a function of the MW frequency of an applied π pulse showing a resonant frequency of 18.424 GHz
(19.717 GHz) for Q1 (Q2). (b) The spin relaxation time is measured by preparing the qubit to spin-up and varying the wait
time before readout. From the exponential decay in the spin-up probability we measure T1 > 50 ms (T1 = 3.7 ± 0.5 ms) for
Q1 (Q2). (c) Spin-up probability as a function of MW duration showing Rabi oscillations of 2.5 MHz for Q1 and Q2. (d) The
dephasing time is measured by applying a Ramsey pulse sequence and varying the free evolution time, τ . Oscillations were
added artificially to help fit of the decay by making the phase of the last microwave pulse dependent on the free evolution
time, φ = sin(ωτ) where ω = 4 MHz. By fitting the data with a Gaussian decay, , P|1〉 ∝ exp [−(τ/T ∗2 )2] sin(ωτ), we extract
T ∗2 = 1.0 ± 0.1 µs (T ∗2 = 0.6 ± 0.1 µs) for Q1 (Q2). In the measurement for Q1 the first π/2 MW pulse is a Y gate. (e) The
coherence time of Q1 (Q2) can be extended to T2Hahn = 19± 3 µs (7± 1 µs) by a Hahn echo sequence. The coherence time is
extracted from an exponential fit to the spin-up probability as a function of the free evolution time in the Hahn echo sequence.
(f) Full two axis control is demonstrated by applying two π/2 pulses and varying the phase of the last π/2 pulse.
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data sets were omitted from the fits as they begin to devi-
ate from a single exponential [21]. All errors are 1σ from the
mean.
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Extended Data Fig. 5. Spin relaxation hotspots used for
high fidelity initialisation. (a) Close-up stability diagram
of the (1,0) to (0,1) charge transition. The white arrow de-
fines the detuning axis between D1 and D2 controlled with
P1. (b) Schematic of the energy level diagram as a function
of detuning for one electron spin in a double quantum dot.
(c) Spin relaxation hotspots are measured by first preparing
the electron on D1 to spin-up using EDSR, applying a volt-
age pulse along the detuning axis (white arrow in (a)) for a
wait time of 200 ns, and performing readout of the electron
spin. We observe three dips in the spin-up probability cor-
responding to spin relaxation hot spots. The first and third
hotspot are due to anticrossings between the (0, ↓) and (↑, 0)
states and the (↓, 0) and (0, ↑) states [25]. The second hotspot
occurs at zero detuning. The voltage separation between the
first and third hot spot corresponds to the sum of the Zeeman
energy of D1 and D2 divided by the gate lever arm α along the
detuning axis. Knowing precisely the Zeeman energies from
EDSR spectroscopy we can accurately extract the gate lever
arm to be α = 0.09e. (d) The spin relaxation time at zero
detuning (orange circle in (a)) is found to be T1 = 220 ns by
measuring the exponential decay of the spin-up probability as
a function of wait time, τ , at zero detuning.
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Supplementary Information: A programmable two-qubit quantum processor in silicon

FREQUENCY SHIFTS ON Q2 DUE TO OFF-RESONANT FREQUENCY PULSES

As discussed in the main manuscript, we observe a large frequency shift on Q2 while applying off-resonant mi-
crowaves (MW). In the experiment the microwave source MW1 (MW2) applies MWs to gate P3 (P4) to manipulate
Q1 (Q2) as shown in see Extended Data Fig. 1. Fig. S1(a) shows the resonant frequency of Q2 shifting by 2 MHz
while off-resonant MWs of 18.5 GHz are applied with MW1 via P3. One possible mechanism to explain this effect
is the AC stark shift, where off-resonance MW’s will shift the qubit’s resonance frequency (ωL) by ∼ ω2

R/2(ω1 − ωL)
away from the drive frequency, ω1 [30]. However, this is a negligible effect and the observed frequency shift is towards
the off-resonant MW frequency ruling out the AC-stark shift as a possible cause. We also performed the same ex-
periment in the (0,1) charge regime where we observed similar behaviour (Fig. S1(b)) eliminating effects due to the
coupling between the two electron spins. Fig. S1(c) shows that the resonant frequency also shifts if instead we apply
off-resonant MWs using MW2 via P4 demonstrating that this effect does not depend on the gate electrode/coaxial
line used to apply the MW’s. Interestingly, we do not see the effect on the other qubit as shown in Fig. S1(d) where
we apply off-resonant microwaves at 18.5 GHz at nearly the maximum output power (P = 22 dBm) of the MW2
source suggesting that the effect is due to some property of the quantum dot. The frequency shift is also measured in
a Ramsey sequence where during the π/2 pulse both MW sources are on and during the wait time both MW sources
are off. This indicates the frequency shift occurs faster than the Ramsey wait time (<100 ns) ruling out local heating
effects which would require time to dissipate. Finally, we observe that the frequency shift is strongly dependent on
the power of the off-resonance MW’s as shown in Fig. S2.
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Supplementary Fig. S1. Frequency shift on Q2 due to off-resonant microwaves signals. (a) Spectroscopy of Q2 with
MW2 while MW1 is either off (blue data) or applying off-resonant MWs (red) to plunger gate P3 with a frequency f = 18.5 GHz
and power P =16 dBm. (b) The same experiment is performed in the (0,1) charge regime where there is only one electron in
the double quantum dot. (c) Spectroscopy of Q2 with MW1 while MW2 is off (blue data) or applying off-resonant MWs (red)
to plunger gate P4 with a frequency f = 18.5 GHz and power P =10 dBm. (d) Spectroscopy of Q1 with MW1 while MW2 is
off (blue data) or applying off-resonant MWs (red) to plunger gate P4 with a frequency f = 18.5 GHz and power P =22 dBm.

The dependence on the quantum dot properties and power would be compatible with the rectification of the AC
signal as an explanation. An asymmetric quantum dot potential will lead to a DC displacement in response to an AC
excitation on the gate. We tried to estimate this by measuring the resonance frequency of Q2 as a function of the
voltage applied on plunger P1 around the position in gate-space where we perform the single-qubit gates. Over the
estimated range of the AC signal, VRMS ∼ 5 mV for an output power of P =16 dBm and measured attenuation of
the coaxial line (∼ 43 dB at 20 GHz), we observe no measurable non-linearity in the resonance frequency. While this
suggests rectification effects are small, it is difficult to get an accurate estimation on the AC signal at the sample and
further work is required to rule out this possibility.

STATE TOMOGRAPHY OF BELL STATES.

The density matrix of a two-qubit state can be expressed as ρ =
16∑
i=1

ciMi where Mi are 16 linearly independent

measurement operators. The coefficients ci were calculated from the expectation values of the measurement operators
either through linear inversion or a maximum likelihood estimation where the later ensures a physical density matrix
that is Hermitian and positive semi-definite [36]. Fig. S3 shows a comparison of the density matrices for the state
Ψ− = (|01〉 − |10〉)/

√
2 calculated using either linear inversion and MLE. The results are nearly identical indicating

the estimated expectation values from the MLE are close to the measured expectation values in the experiment. For
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Supplementary Fig. S2. Power dependence of the Q2 frequency shift. Spectroscopy maps showing the resonance
frequency of Q2 measured with MW2 as a function of the off-resonant MW frequency applied using MW1. These maps are
measured at MW1 powers (a) 0 dBm, (b) 10 dBm, (c) 15 dBm, and (d) 20 dBm. The larger shifts in the resonance frequency
most likely occur at transmission resonances where the power applied on the device is larger.

all measured states, the elements of the density matrix calculated with either linear inversion and MLE differ on
average by ∼ 0.005.
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Supplementary Fig. S3. Comparison between the maximum likelihood estimation and linear inversion for the Bell
state Ψ− = 1/

√
2(|01〉 − |10〉).

In quantum state tomography, the density matrix can be reconstructed by measuring the two-spin probabilities
after applying 9 combinations of the prerotations I,X, Y . In the actual experiment, we also included the prerotation
X2 to help detect systematic errors leading to 16 combinations in total. Fig. S4 shows the real component of the
estimated density matrices for the four Bell states and ψ = (|10〉+ |11〉 /

√
2). These were calculated using either all

prerotations or a subset of these prerotations, I,X, Y or X,Y,X2. Using either X,Y,X2 or I,X, Y,X2 gives similar
results where the state fidelities and concurrences are 2−9% and 4−11% less than those calculated with I,X, Y . For
the final estimate of the density matrices we use only the prerotations I,X, Y as I should give a better estimate for
the expectation values than X2 due to decoherence and small calibration errors in our system. We did not account for
decoherence and other errors in the prerotation pulses, which likely causes us to underestimate the overlaps with the
ideal Bell states. Future work will include incorporating the prerotation errors into the state tomography analysis.
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Supplementary Fig. S4. Comparison between density matrices constructed using different prerotations. The
real component of the reconstructed density matrices using a maximum likelihood estimation for the four Bell states (a) Ψ+ =
(|01〉+|10〉)/

√
2, (b) Ψ− = (|01〉−|10〉)/

√
2, (c) Φ+ = (|00〉+|11〉)/

√
2, (d) Φ− = (|00〉−|11〉)/

√
2, and (e) ψ = (|10〉+|11〉)/

√
2.

Here, the columns label whether the I,X, Y or X,Y,X2 or I,X, Y,X2 prerotations were used to calculate the expectation values
in the estimation of the density matrices.

SIMULATION OF TWO ELECTRON SPINS IN A DOUBLE QUANTUM DOT

Description of the system

In the simulation, we consider two electrons in two tunnel-coupled quantum dots where an external magnetic field
B0 is applied to both dots. In addition to this field, the two dots have different Zeeman energies due to the magnetic
field gradient across the double quantum dot generated by micromagnets. The Zeeman energy of Q1 (Q2) will be
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denoted as B1 (B2). The double dot system is modelled with the following Hamiltonian [37],

Ĥ =


−β 0 0 0 0 0
0 −∆v 0 0 t t
0 0 ∆v 0 −t −t
0 0 0 β 0 0
0 t −t 0 U1 + ε 0
0 t −t 0 0 U2 − ε

 , (1)

with the following states as the eigenbasis [ |↓↓〉 , |↓, ↑〉 , |↑, ↓〉 , |↑, ↑〉 , |S, 0〉 , |0, S〉 ]. In this Hamiltonian, β = B1+B2

2 ,

∆v = B1−B2

2 ,
√

2t is the tunnel coupling between the (1,1) and (0,2)/(2,0) singlet states, and Ui is the on-site charging
energy of the ith quantum dot. In order to study the phases of the qubits during control pulses, the Hamiltonian is
transformed into a rotating frame using,

H̃ = V HV † + i~(∂tV )V †, (2)

where V = B1(σ̂z ⊗ Î) + B2(Î ⊗ σ̂z) is the matrix that describes the unitary transformation. The transformed
Hamiltonian is,

H̃ =


0 0 0 0 0 0
0 0 0 0 t ei∆vt t ei∆vt

0 0 0 0 −t e−i∆vt −t e−i∆vt
0 0 0 0 0 0
0 t e−i∆vt −t ei∆vt 0 U1 + ε 0
0 t e−i∆vt −t ei∆vt 0 0 U2 − ε

 . (3)

To model the single qubit gates during EDSR, we used the following Hamiltonian,

Ĥmw =
∑
k

Bmw,k cos (ωkt+ φk)[σ̂x ⊗ Î + Î ⊗ σ̂x], (4)

which assumes the same drive amplitude on each of the qubits. Here, k represents the kth signal with an angular
frequency ωk, phase φk, and driving amplitude Bmw,k. This Hamiltonian is transformed into the rotating frame using
equation 2 and the rotating wave approximation (RWA) can be made to remove the fast driving elements as the Rabi
frequency is much smaller than the Larmor precession. This gives the following Hamiltonian,

H̃mw =
∑
k


0 Ωke

i∆ω1 Ωke
i∆ω2 0 0 0

Ω∗ke
−i∆ω1 0 0 Ωke

i∆ω2 0 0
Ω∗ke

−i∆ω2 0 0 Ωke
i∆ω1 0 0

0 Ω∗ke
−i∆ω2 Ω∗ke

−i∆ω1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (5)

where Ωk is defined as BMW,ke
iφk , Ω∗k is the complex conjugate of Ω, and ∆ωk is defined as ωk − ωqubiti .

The dynamics of the two qubit system can be described by the Schrödinger-von Neumann equation,

ρt+∆t = e
−iH̃t

~ ρte
iH̃t
~ , (6)

which was solved numerically using the Armadillo linear algebra library in C++ where the matrix exponentials were

solved using scaling methods (eA =
s∏
e

A
2s ) and a Taylor expansion. In the experiments, we apply microwave pulses

with square envelopes that have a finite rise time due to the limited bandwidth of the I/Q channels of the MW vector
source. For simplicity, we approximate these MW pulses with a perfect square envelope. On the other hand, the
detuning pulses were modelled with a finite rise/fall time using a Fermi-Dirac function in order to take (a)diabatic
effects into account. The finite rise time was set to 2 ns based on the cut-off frequency of low-pass filter attached to
the lines used to pulse the detuning pulses.

Modelling noise in the simulation

In the model we include three different noise sources. The first two noise sources are from fluctuating nuclear spins
in the natural silicon quantum well which generate quasi-static magnetic noise which couples to the qubits via the
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Z ⊗ I and I ⊗ Z terms in the Hamiltonian. These fluctuations are treated as two independent noise sources as D1
and D2 are in different locations in the quantum well and will sample the field from different nuclear spins. The third
noise source is charge noise which can couple to the qubits via the magnetic field gradient from the micromagnets
which we model as magnetic noise on the Z ⊗ I and I ⊗ Z terms in the Hamiltonian. In addition, charge noise also
couples to the spins via the exchange coupling which leads to noise on the Z ⊗ Z term in the Hamiltonian.

In our simulations, we treat these noise sources as quasistatic where the noise is static within each cycle and only
changes between measurement cycles. This approximation is reasonable because the noise in the system is pink,
with low frequencies in the power spectrum more pronounced [21]. The static noise due to each noise source was
modelled by sampling a random value from a Gaussian distribution with a standard deviation, σ, corresponding to
the contribution to dephasing of that noise process. After sampling the static noise, the time evolution of the qubits
during a gate sequence was calculated. This time evolution was averaged over many repetitions to give the final result
where for each repetition new values for the static noise were sampled. In total, for each simulation we performed 500
repetitions to ensure convergence.

In the experiment, single-qubit gates are performed at higher detuning near the center of the (1,1) ε = −2 meV
where the exchange is low, Joff = 270 kHz, and a two qubit CZ gate is performed by pulsing to low detuning
ε = −0.5 meV where the exchange is high, Jon = 6 MHz. To estimate the relative effect of charge noise on the
Z ⊗ I, I ⊗Z, and Z ⊗Z terms at these two detuning points, we use the spectroscopy data of the qubits as a function
of detuning given in Fig. S5. The four observed resonances correspond to the four transitions shown in Fig. S5(c)
between the |00〉,|01〉,|10〉,|11〉 eigenstates. From this data we can estimate the derivative of the transition energy from

state |i〉 to |j〉 at a particular detuning,
dE|i〉→|j〉

dε |ε, which is directly proportional to the magnitude of fluctuations in
the transition energy under the influence of charge noise. Fixing the energy of the |00〉 state, from these derivatives
we can calculate the relative noise levels on the other energy eigenstates,

B(ε) =


0

∂E|00〉↔|01〉
∂ε |ε

∂E|00〉↔|10〉
∂ε |ε

∂E|00〉↔|01〉
∂ε |ε +

∂E|10〉↔|11〉
∂ε |ε

 (7)

These four noise levels can be decomposed in the basis (IZ, ZI, ZZ, II) by calculating A−1 ∗B(ε) where,

A =


1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

 (8)

We estimate the relative composition of the noise at ε = −2 meV to be (neglecting the identity term), 0.37×Z ⊗ I +
0.31× I ⊗Z+ 0×Z⊗Z, and at ε = −0.5 meV to be, 0.26×Z⊗ I + 0.76× I ⊗Z+−0.18×Z⊗Z. Note that this is a
crude approximation since we only take into account voltage noise along the detuning axis,whereas in reality charge
noise acts also along other axes. Not included in the simulation are calibration errors. Based on the the AllXY and
Ramsey calibration experiments, few % miscalibrations are possible.

Simulations of the two qubit algorithms

To describe the double dot system used in the experiment, we used the following parameters in the Hamiltonian.
The qubit frequencies were chosen to be B1 = 18.4 GHz, B2 = 19.7 GHz, and the on-site charging energies to be
U1 = U2 = 3.5 meV), comparable to the experimental values. The tunnel coupling was chosen to be t = 210 MHz
so that the residual exchange energy Joff was equal to 300 kHz, giving a similar Joff as measured in the experiment.
The two-qubit gates are implemented by choosing a value of ε where J = 6 MHz, when diagonalizing the Hamiltonian
Ĥ.

The results of the simulations for the Deutsch-Josza algorithm and the Grover algorithm using both the CZ gate
and the decoupled CZ gate are shown in Fig. S6. The amplitudes for the three noise sources used in the simulations
were identical for all 16 panels. The nuclear spin noise for Q1 and Q2 was chosen to give the single qubit decoherence
times T ∗2 = 1000 ns and T ∗2 = 600 ns measured in the Ramsey experiment in the Extended Data Fig. 3. The amplitude
of charge noise was then adjusted so that the simulations best match the data.The simulations reproduce many of
the features found in the experimental data for the algorithms.

By simulating the algorithms, we learn that the residual exchange coupling Joff during single-qubit gates has little
effect (< 2%) on the result of the algorithms. Furthermore, we find that without noise on the single-qubit terms,
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Supplementary Fig. S5. Microwave spectroscopy of Q1 and Q2. (a,b) Spectroscopy of (a) Q1 and (b) Q2 versus detuning,
ε, after initialising the other qubit to (|0〉+ |1〉)/

√
2. Towards ε = 0 there are two resonances for Q1 (Q2), marked by the green

and purple circle (red and yellow circle), which are separated by the exchange energy, J(ε)/h. As discussed in the manuscript,
the Zeeman energy of Q1 and Q2 also depends on detuning (dashed black lines in (a) and (b)) as changes to the applied voltages
will shift the position of the electron in the magnetic field gradient. Additionally, we observe that the Zeeman energy of Q1 has
a nonlinear dependence towards the (0,2) charge regime (ε = 0) which can be explained by the electron delocalising from D1
towards D2 which has a significantly higher Zeeman energy. (c) Schematic showing the color coded transitions that correspond
to the resonances in (a,b).

it is difficult to get a consistent agreement with the data. Additional noise on the coupling strength improves the
agreement. Different from the cases of the Deutsch-Jozsa algorithm and the conventional Grover algorithm, the
simulation for the decoupled version of Grovers algorithm predicts a better outcome than the experiment. This case
uses the longest sequence of operations, leaving most room for discrepancies between model and experiment to build
up. Those could have a number of origins: (i) the implementation of the static noise model is not accurate enough,
(ii) non-static noise plays a role, (iii) the calibration errors in the gates that were left out of the simulation, and
(iv) variations in the qubit parameters and noise levels between experiments. Finally, we note that initialisation and
readout errors are not taken into account in the simulations. Since the data shown is renormalised to remove the
effect of initialisation and readout errors, the simulated and experimental results can be compared directly.
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Supplementary Fig. S6. Simulation of the Deutsch-Josza and Grover algorithms including decoherence modelled
as static noise. Two-spin probabilities as a function of the sequence time during the (a) Deutsch-Josza algorithm and the (b)
Grover search algorithm for each function using either the normal or decoupled version of the two-qubit CZ gate. The solid
lines show the outcome of the simulations which include decoherence due to quasi-static charge noise and nuclear spin noise.
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