Blog

The monopoly of Aluminium is broken

Discovering Majorana’s was only the first step, but utilizing it as a quantum bit (qubit) still remains a major challenge. An important step towards this goal has just been taken, as shown by researchers from TU Delft in today’s issue of Nature Physics. It is an almost thirty years old scientific problem that has just been resolved: demonstrating the difference between the even and odd occupation of a superconductor in high magnetic fields. Thus far, this was only possible in aluminium which is however incompatible with Majorana’s. This result enables the read out and manipulation of quantum states encoded in prospective Majorana qubits.

Qubit

Qubits store information similarly to normal (digital) bits. While a bit represents either 0 or 1, a qubit utilizes the laws of quantum mechanics, making it possible to be in the state of 0 and 1 at the same time. This enables solving several mathematical problems much faster than the most capable supercomputers ever built. Several research groups and companies around the globe pursue the development and prototyping of such a powerful quantum computer, including QuTech at the Delft University of Technology.

News overview