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1 Experimental Methods

1.1 Measurement setup

The NV center spins are imaged, initialized and read out using a confocal microscope at room
temperature. The magnetic field is aligned along the [111] axis of the diamond sample. The
NV centers studied in this work are formed during growth in a type Ib single-crystal diamond
from Sumitomo Electric. This diamond contains nitrogen (N) impurities with a density of
1019 − 1020 cm−3. The dipolar interaction strength between electron spins is therefore of order
MHz.

Single NV centers are identified by observing antibunching in photon correlation measure-
ments (demonstrating that it is a single emitter) and measurement of the spin splitting at zero
magnetic field (showing it is an NV center). The NV centers studied here were selected to have
their symmetry axes parallel to the magnetic field, so that mixing of electronic spin levels is
minimized. Details about the optics part of the setup, the identification of single NV centers
and about the magnetic field alignment can be found in Ref. S1.

We use magnetic resonance to coherently manipulate the electron spin state. An oscillating
radiofrequency (RF) current is sent through a thin gold wire (10 micrometer diameter) which
generates an oscillating RF magnetic field. The wire is positioned to within about 20 microm-
eter of the NV center under study. Multiple synchronized outputs of a pattern generator (HP
81130A) are used to control the laser via an acoustic-optical modulator (Isomet 1250C), to
gate the photon counters, and to trigger an arbitrary wave-form generator (Tektronix AWG520).
The arbitrary waveform generator in turn chops a continuous-wave RF signal (Agilent E8257C)
through an RF switch (Minicircuits ZA-SWA-2-50DR), leading to the desired sequence of RF
bursts. Risetime of the RF pulses after the switch is about 1 nanosecond. In order to obtain high
driving powers the RF signal is amplified with up to 40 dB (Amplifier Research 25S1G4A).

1.2 Spin manipulation sequences

The pulse duration needed to achieve a 90-degree rotation (π/2 pulse) or a 180-degree rotation
(π pulse) of the spin is calibrated from coherently driven spin oscillations. Theπ pulse is
defined as a pulse which inverts thez-projection of the spin, i.e. transformsSz

0 operator of the
NV center electron spin to−Sz

0 . Theπ/2 pulse is twice shorter. All pulse sequences start by
initializing into |mS = 0〉. At B = 0 G, all three spin sublevels are manipulated. Aπ/2 pulse
creates the spin superposition state1/

√
2 (|mS = −1〉 + |mS = +1〉) (up to a global phase).

In the Ramsey experiments, dephasing of this state is measured by applying a secondπ/2 pulse
after a variable free evolution time. In case no phase difference is acquired, this second pulse
brings the system back to the initial state|mS = 0〉. At B = 740 G, we only manipulate the
spin sublevels|mS = 0〉 and|mS = −1〉 (the state|mS = +1〉 is far away in energy and does
not contribute to the dynamics). Since at high fields we are dealing with only two levels, the
calibration ofπ/2 andπ pulses is different from the zero-field case where we manipulate all

1



three spin sublevels. In particular, aπ/2 pulse on this effective two-level system (effective spin
1/2) creates the spin superposition state1/

√
2 (|mS = −1〉+ |mS = 0〉) (up to a global phase).

In the Ramsey experiments, the secondπ/2 pulse now creates the state|mS = −1〉 in case of
no dephasing. As a consequence, the Ramsey curves atB = 0 G and atB = 740 G have opposite
initial values in our experiments (see Fig. 2A).

To measure the coherence timeT2 a π pulse is inserted in between the twoπ/2 pulses, see
Fig. S1A. Fig. S1B shows measurements on NV31 atB= 0 G where the free evolution time
before theπ pulse,τ1, is fixed, and the free evolution time after theπ pulse,τ2, is varied. A
clear echo signal is obtained wheneverτ1 = τ2, demonstrating that part of the dephasing can
be reversed. Note that both atB = 0 G and atB= 740 G, the echo sequence ideally brings the
system back to the initial state|mS = 0〉 (up to a phase factor), since the total rotation is over
an angle of 2π. As expected, the observed oscillations as a function ofτ2 are similar to those
obtained from the Ramsey experiments (see Fig. 2A). By settingτ1 = τ2 =τ and varying the
total free evolution time 2τ , a spin echo measurement is performed (see Fig. S1C).

2 Theoretical description of the system

We consider decoherence of a single NV center in diamond by a bath of the electron spins of the
nitrogen atoms (P1 centers, according to classification of Ref. S2). The NV center is treated as a
localized spinS0 = 1, possessing a single-axis anisotropyH0

a = D(Sz
0)

2, whereD = 2.87 GHz
is the splitting between the levels|mS = 0〉 and|mS = ±1〉 (heremS denotes the eigenstates of
Sz

0 ) at zero external magnetic field. The anisotropyz-axis is directed along the[111] direction.
The quantity measured in experiments isp0(t): the time-dependent population probability of
the state|mS = 0〉. The initial state of the NV center is|mS = 0〉, while the state of the bath
is maximally mixed: the density matrix of the bath is proportional to the identity matrix, i.e. all
states of the bath are equally probable.

The nitrogen P1 centers are treated as localized spinsSk = 1/2 (k = 1, . . . N ). For given
experimental circumstances (large average distance between the NV center and the nitrogens),
the dominant coupling between the NV center and the nitrogens (the system-bath interaction
HSB) is due to the dipolar interaction. Also, the dipolar interaction between different bath
spins is important, since the typical distance between different nitrogens is the same as the
typical distance between NV and a nitrogen. Finally, we must take into account the hyperfine
interactions on the NV site and on the P1 sites, since the electron spins at both NV and P1 sites
interact with the nuclear spin of14N.

Decoherence of a central spin by a spin bath is a very complex many-body non-equilibrium
quantum phenomenon, which is important in many areas of physics, from magnetic resonance
to quantum information processing. Theoretical description of the spin-bath decoherence is a
rather old problem, and many approaches of different degree of sophistication have been devel-
oped for different interesting solid-state systems, starting from early days of NMR/ESR theory
(see e.g. Refs. S3,S4), till very recently (see e.g. Refs. 3–10 of the main text). All these theories
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involve a trade-off between quantitative rigour and qualitative understanding. Some theories
use simplified phenomenological treatments and involve assumptions about the system’s be-
havior, but allow all calculations to be performed analytically, and give a very clear (although
crude) qualitative picture of the underlying physics. Other theories use more detailed numeri-
cal simulations, with fewer (or no) assumptions, and gain quantitative rigour at the expense of
being much less clear. In the present work, we use two theoretical approaches, located at the
opposite ends of this dilemma. First, we use a simple phenomenological model which allows
for a completely analytical treatment, and provides qualitative understanding of experiments.
Second, we use direct numerical simulations, starting straight from the relevant micoroscopic
Hamiltonians; these simulations give much less qualitative insight, but involve absolutely no
assumption about the behaviour of the system. The agreement between both approaches and
the experimental results allows us to achieve both goals: to gain qualitative insights into the dy-
namics of decoherence of an NV center, and, at the same time, to make sure that our qualitative
physical picture is correct.

Below, in Sections 3–4, we explain in detail the microscopic structure and derivation of
the Hamiltonians for the NV and P1 centers. Explanation of a simplified analytical model for
the bath of P1 centers, and the analytical results are given in Sec. 5. The details of numerical
simulations are given in Sec. 6.

For convenience, everywhere below we take the Planck’s constanth̄ = 1, and express the
energy quantities in frequency units.

3 Hamiltonian of a single NV center

Along with the single-axis anisotropy mentioned above, another important interaction is the
hyperfine coupling at the NV site, i.e. the coupling between the electron spinS0 = 1 and the
nuclear spin14N of the NV center (denoted below asI0). The relevant hyperfine Hamiltonian is
deduced from the experimental measurements in Refs. S7,S8:

H0
hf = A0S

z
0I

z
0 + A1(S

x
0 Ix

0 + Sy
0I

y
0 )− P0(I

z
0 )2. (S1)

whereA0 = 2.3 MHz, A1 = 2.1 MHz, andP0 = −5.1 MHz. Also, external magnetic fields can
be applied to the system: (1) a static magnetic fieldB along thez-axis ([111] direction), and/or
(2) an oscillating fieldHR with frequencyω can be applied to the NV center along thex-axis,
either in order to study Rabi oscillations, or to implement theπ- andπ/2-pulses in the Ramsey
and Hahn spin echo experiments. Thus, the relevant part of the NV center Hamiltonian is

HS = D(Sz
0)

2 +A0S
z
0I

z
0 +A1(S

x
0 Ix

0 +Sy
0I

y
0 )−P0(I

z
0 )2 +g0µBBSz

0 +g0µBHRSx
0 cos ωt, (S2)

whereg0 = 2 is the Land́e factor of the NV center, andµB is Bohr’s magneton. This Hamilto-
nian is complex, and inconvenient for numerical simulations, as it contains large energy scales:
D and, in case of large magnetic field,g0µBB. Significant simplification can be achieved by
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going to the interaction representation, which excludes the large terms from the Hamiltonian
(S2), and treating the remaining terms perturbatively.

Below, we perform this simplification for two experimentally relevant situations: zero mag-
netic fieldB = 0, and large magnetic fieldB = 740 G. In NMR/ESR language, we apply the
standard procedure of rotating-frame transformation and omission of the non-secular (explicitly
time-dependent) terms (S10).

3.1 Zero magnetic field,B = 0

At zero magnetic field, we eliminate the first term by applying a unitary transformationU1 =
exp [−iD(Sz

0)
2t] = 1+(Sz

0)
2[exp (−iDt)−1] to the Hamiltonian (S2), treating the termD(Sz

0)
2

as a zero-order Hamiltonian, and everything else as a perturbation. In this way, the terms
containing the operatorsSx

0 andSy
0 become time-dependent, oscillating with the frequencyD.

Due to these oscillations, for instance, the third term in (S2) is averaged out: its time-average
value is zero, so it gives no contribution in the first-order approximation. In the second order, the
effect of this term is twofold. Firstly, it mixes the state|mS = 0〉 with |mS = ±1〉 and slightly
renormalizes their energies. These effects are small (A1/D ∼ 10−3), and can be neglected:
e.g., the energy corrections are of order ofA2

1/D ∼ 1.5 kHz, and they can be visible only
at timescales of few milliseconds, much larger than the relevant experimental timescales (few
microseconds). Secondly, the termA1(S

x
0 Ix

0 + Sy
0I

y
0 ) can strongly mix the states|mS = +1〉

and|mS = −1〉, since they are degenerate in zeroth order. However, this effect is also too weak,
and any external field larger thanA2

1/D ∼ 10−3 G already destroys it (this field can come, for
instance, from interaction with the bath, which is of order of 0.1 G). Finally, we note that since
this term does not affect the electron spinS0, it also does not affect the nuclear spinI0, because
the flip-flop processes involve bothS0 andI0. The conclusion is that the third term in (S2) can
be safely dropped. The nuclear quadrupolar termP (Iz

0 )2 then becomes just a constant, and can
also be ignored.

However, the last term in the Hamiltonian (S2) requires more care: it is already explicitly
time-dependent, and after the unitary transformationU1, its dependence on time has the form
of eitherexp (iDt) cos ωt or exp (−iDt) cos ωt, depending on the position in theSx

0 matrix. In
zero-magnetic field experiments, the frequency of the oscillating field isω = D, so that the
termsexp (±iDt) cos ωt contain both non-oscillating part1/2 and the part oscillating with the
frequency2D. The oscillating part has negligible effect: all considerations of the previous para-
graph can be applied here with minor modifications. Thus, we retain only the non-oscillating
(secular) part, and the Hamiltonian of the NV center then becomes

HS = A0S
z
0I

z
0 + (1/2)g0µBHRSx

0 . (S3)

Note that the last term, which describes the action of the oscillating driving field, excites both
transitions|mS = 0〉 ↔ |mS = 1〉 and|mS = 0〉 ↔ |mS = −1〉.

Finally, we note that in this work, we do not excite the nuclear spin of the NV center,
and the intrinsic relaxation time (due to e.g. spin-phonon coupling) of the spinI0 is of order
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of milliseconds. Thus, for a single experimental run, the nuclear spin is frozen, andIz
0 is

the constant of motion. Then, the nuclear spinI0 just creates an additional static magnetic
field along thez-axis (equal to±A0 or zero, depending onmI , wheremI = 0,±1 denotes
the eigenstates ofIz

0 ). However, between different experimental runs, the nuclear spin has
enough time to switch to a state with anothermI . Thus, in order to calculate the experimentally
observable populationp0(t) of the statemS = 0, we need to perform calculations for different
mI , and average the result.

3.2 Large magnetic field,B = 740 G

If the magnetic fieldB is large, then the transitions|mS = 0〉 ↔ |mS = 1〉 and|mS = 0〉 ↔
|mS = −1〉 have very different frequencies:D+g0µBB for the first transition, andD−g0µBB
for the second one. In experiments, the driving field frequencyω is set to excite only the second
transition,ω = D − g0µBB, so that the state|mS = +1〉 is not affected at all. In this case,
the NV center can be described in terms of a fictituous spins0 = 1/2, with the state| ↑〉 of s0

corresponding to|mS = 0〉, and the state| ↓〉 of s0 corresponding to|mS = −1〉. By projecting
the full Hamiltonian (S2) onto the subspace spanned by the levels|mS = 0〉 and|mS = −1〉,
an effective Hamiltonian for the spins0 is obtained:

HS = A0s
z
0I

z
0 + (1/

√
2)g0µBHRsx

0 . (S4)

where the non-secular terms are excluded in the same way as in Sec. 3.1 (all considerations of
that section are applicable here with minor modifications).

4 Hamiltonian of the bath, and coupling of an NV center to
the bath

The bath is made of nitrogen atoms (P1 centers, Ref. S2), each having an unpaired electron with
the spinSk = 1/2 and a14N nuclear spinIk = 1. The hyperfine coupling betweenSk andIk is
rather strong (around 100 MHz), and should be taken into account.

4.1 Hamiltonian of a single P1 center

In order to describe the role of the hyperfine coupling, we need to consider the microscopic
structure of a P1 center. At every P1 center, the unpaired electron is shared by the nitrogen atom
and the neighboring carbon atom. Such a delocalization of the electron is accompanied by the
Jahn-Teller elongation of the corresponding carbon — nitrogen bond. For every nitrogen, there
are four equivalent neighboring carbons, so the electron can be delocalized along one of four
axes:[111], [1̄11], [11̄1], and[111̄]. Correspondingly, there are four types of P1 centers. For a
given P1 center, let us introduce a local coordinate system(X, Y, Z), with theZ-axis coinciding
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with the delocalization axis of this P1 centers. For one type of center, with the delocalization
axis [111], the local coordinates(X, Y, Z) coincide with the laboratory coordinates(x, y, z).
For three other types,(X,Y, Z) differ from (x, y, z) by a 90◦- or a 180◦-rotation around the
c-axis of the crystal. In the local coordinate frame, the hyperfine Hamiltonian of a single P1
center is of single-axis type (S2,S9):

HL = AZIZ
k SZ

k + AX(IX
k SX

k + IY
k SY

k )− P (IZ
k )2 (S5)

where(IX
k , IY

k , IZ
k ) are the operators of thek-th nuclear spin in the local coordinate frame,

(SX
k , SY

k , SZ
k ) are the operators of thek-th nitrogen electron spin in the local coordinate frame,

and the hyperfine and quadrupole parameters are known (S2,S9): AZ = 114 MHz, AX = 81.3
MHz, andP = −4 MHz. Note that the electron spinSk = 1/2 of a P1 center has no anisotropy,
so that the simplifications of Sec. 3.1 can not be used here.

It is important to note that the delocalization axis of a given P1 center can change in time,
switching from one possible direction to another. At room temperatures, the time between such
switches is much longer than the characteristic time of a single experimental run. On the other
hand, during the whole experiment (which includes105 single runs), the delocalization axis of
a given nitrogen can switch several times. Thus, in calculations, we should consider the axis
direction as static, but, in the end, average over all possible directions of the delocalization axis.

The Hamiltonian (S5) has three doubly degenerate eigenenergies:E0 = 0 (corresponding
eigenfunctions will be denoted as|φ0, +〉 and |φ0,−〉), E1 = 130 MHz (with eigenfunctions
|φ1, +〉 and |φ1,−〉), andE2 = 149 MHz (eigenfunctions|φ2, +〉 and |φ2,−〉). Each pair of
states|φF ,±〉 (whereF = 0, 1, 2) represents a Kramers doublet, and the degeneracy is caused
by the time-reversal symmetry of the Hamiltonian (S5). Note that the energy difference between
these doubly degenerate subspaces is much larger than dipolar coupling to the NV center and
to other P1 centers; this fact will be used below.

The eigenfunctions|φF ,±〉 are the entangled states of the electron and the nuclear spin of
a P1 center. For instance, for a type-1 center, these functions can be expressed in the basis
|Sz

k ; I
z
k〉 as follows:

|φ0,−〉 = −p|1/2; 0〉+ q| − 1/2; 1〉, |φ0,+〉 = −q|1/2;−1〉+ p| − 1/2; 0〉; (S6)

|φ1,−〉 = p|1/2;−1〉+ q| − 1/2; 0〉, |φ1,+〉 = −q|1/2; 0〉 − p| − 1/2; 1〉;
|φ2,−〉 = | − 1/2;−1〉, |φ2,+〉 = |1/2; 1〉;

wherep = 0.515 andq = 0.857. Note thatp andq are close to
√

1/3 and
√

2/3, correspond-
ingly; this is due to fact that the values ofAX andAZ are close to each other, and the value
of P is small. IfAX andAZ were exactly equal andP were zero, then the hyperfine coupling
would be isotropic, and the eigenstates of the hyperfine Hamiltonian would have a well-defined
total spinJk: there would be two states withJk = 1/2, and four states withJk = 3/2, and the

values ofp andq then would be equal to the corresponding Clebsch-Gordan coefficients
√

1/3

and
√

2/3.
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At large magnetic field, the Zeeman termgµBBSz
k has to be added to the Hamiltonian (S5),

whereg = 2 is the Land́e factor of the electron spin of the P1 center; note that the field is
directed along thez-axis of laboratory frame, notZ-axis of the local frame. Due to the large
field B = 740 G, the Hamiltonian can be simplified using the arguments similar to those of
Sec. 3.1; the resulting Hamiltonian is

HL = gµBBSz
k + A1S

z
kI

z
k (S7)

whereA1 = 114 MHz for the P1 centers of the type 1 (with the delocalization axis[111]), and
A1 = 86 MHz for the P1 centers of the other types (with the delocalization axis directed along
[1̄11], [11̄1], or [111̄]).

4.2 Coupling between P1 centers and NV center

The coupling between the NV center and the nitrogen atoms is of dipolar origin. Assuming that
the NV center is located at the origin of the laboratory frame, it is:

HSB =
∑

k

g0gµ2
B

r3
k

[S0Sk − 3(S0nk)(Sknk)] (S8)

whererk is the radius-vector of thek-th nitrogen atom,rk = |rk|, andnk = rk/rk. Due to
strong anisotropy of the NV center, this form can be simplified using the reasoning of Sec. 3.1.

4.2.1 Zero magnetic field

For the case of zero magnetic field, applying the unitary transformationU1 (see Sec. 3.1), we
obtain:

HSB =
∑

k

akS
z
0 [Sz

k − 3nz
k(Sknk)] , (S9)

whereak = g0gµ2
B/r3

k. However, simplicity of this expression is illusory: the local Hamiltonian
of the P1 center (S5) is rather complex.

To simplify matters, we note that the typical value ofak is of order of 0.5 MHz or smaller,
so that this coupling Hamiltonian can be treated as a perturbation, withHL of Eq. S5 being the
zeroth-order Hamiltonian. Thus, we can take into account only those matrix elements ofHSB

which connect the states ofHL with equal energies, i.e. only the elements〈φF,±|HSB|φF,±〉
whereF = 0, 1, or 2, and neglect all other elements. In this way, instead of complex 6-level
Hilbert space of a P1 center, we have three uncoupled 2-level subspaces (indexed byF = 0, 1,
2). Each 2-level subspace can be described as a pseudo-spin-1/2 system, with the pseudo-spin
operatorsS ′αk (α = x, y, z), where the state|φF,+〉 corresponds to the state| ↑〉 of the pseudo-
spin and the state|φF,−〉 corresponds to the state| ↓〉. For instance, for a P1 center of type 1, up
to possible unitary transformation, the operatorsSx,y,z

k of the P1 center within these subspaces
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have the following nonzero elements:

〈φF,+|Sz
k |φF,+〉 = −〈φF,−|Sz

k |φF,−〉 = rz (S10)

〈φF,+|Sx
k |φF,−〉 = 〈φF,−|Sx

k |φF,+〉 = rx

〈φF,+|Sy
k |φF,−〉 = −〈φF,−|Sy

k |φF,+〉 = ry

whererx = 0.133, ry = i · 0.133, rz = 0.234 for F = 0; rx = 0.367, ry = i · 0.367, rz = 0.234
for F = 1; andrx = ry = 0, rz = 0.5 for F = 2. Thus, for the type-1 P1 center with fixed
F , we can simply replaceSα

k by 2rαS ′αk (α = x, y, z), where the operatorsS ′αk are unitarily
equivalent toSα

k . The matrix elements for other types of P1 centers (with other delocalization
axes) can be obtained by appropriate rotations around thec-axis of the crystal.

Since the pseudo-spin operatorsS ′αk (α = x, y, z) are related to the spin operatorsSα
k (α =

x, y, z) via simple unitary transformation, the Hamiltonian of interaction between the NV center
and a nitrogen atom can be written as

HSB =
∑

k,α

a′k,αSz
0S

′α
k (S11)

where the new coupling parametersa′k,α are linearly related to the original couplingsak of the
Hamiltonian (S9); for instance, for a type-1 P1 center,a′k,α = 2akrα(δα,z − 3nz

kn
α
k ), where

δα,z is the Kronecker’s symbol. By an appropriate unitary transform, this Hamiltonian can be
rewritten in the simple form

HSB =
∑

k

ãkS
z
0 S̃

z
k , (S12)

whereS̃z
k is unitarily equivalent to the ”original” spin operatorSz

k , and the renormalized cou-
pling coefficientsãk =

√
(a′k,x)

2 + (a′k,y)
2 + (a′k,z)

2 are proportional toak of the ”original”
Hamiltonian (S9); the proportionality coefficient depends onnk, value ofF , and type of the P1
center (direction of its delocalization axis).

4.2.2 Large magnetic field

For large magnetic field, the coupling Hamiltonian is simplified easily. Neither of the spins
S0 or Sk can be flipped due to dipolar interactions, since the mismatch in energies between
different states ofS0 or Sk is very large. Formally, we take the Zeeman term (forSk) and the
Zeeman-plus-anisotropy term (forS0) as a zeroth-order Hamiltonian, and omit the non-secular
terms from the coupling Hamiltonian (S9). In terms of the pseudo-spins0 = 1/2 (see Sec. 3.2),
we obtain:

HSB =
∑

k

ak[1− 3(nz
k)

2](sz
0 − 1/2)Sz

k =
∑

k

cks
z
0S

z
k − (1/2)

∑

k

ckS
z
k , (S13)

whereak = g0gµ2
B/r3

k, andck = ak[1−3(nz
k)

2]. Note that the last term renormalizes the internal
Hamiltonian of the bath.
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4.3 Dipolar coupling between different P1 centers

The coupling between different P1 centers is important since it gives rise to the internal dynam-
ics of the bath. The Hamiltonian of a pair of dipolarly coupled nitrogen atoms is

Hjk = HL,j + HL,k + Hdip,jk (S14)

Hdip,jk = g2µ2
B

1

r3
jk

[SjSk − 3(Sjnjk)(Sknjk)] , (S15)

whereSj is the electron spin of thej-th nitrogen,Sk is the electron spin of thek-th nitrogen,
andrjk is the radius-vector connecting the two nitrogens (rjk = |rjk|, andnjk = rjk/rjk). The
local HamiltoniansHL,j andHL,k have the form (S5) or (S7), depending on magnetic field; note
that the local coordinate frames(X,Y, Z) for the centersj andk may be different, depending
on how their delocalization axes are oriented with respect to the lab frame. The characteristic
value of such an intra-bath coupling is of the same order as the coupling between the NV center
and the P1 centers (i.e., of order of 0.5 MHz).

At zero magnetic field, the dipolar interaction leads to both single-spin flips and pairwise
flip-flops. E.g., ifk-th spin is in the state|φF,+〉 with F = 1 or F = 2, the effect of the term
Sz

j S
x
k in Eq. S14 is to change thek-th spin state from|φF,+〉 to |φF,−〉, since such a transition

does not change the energy and has a nonzero matrix element. In so doing, the state of thej-th
spin may remain unchanged: e.g., if thej-th spin belongs to a type-1 nitrogen center, then the
action ofSz

j does not lead to a flip ofj-th spin. On the other hand, if thek-th spin is in the
state|φ3,±〉, the only way for it to flip is to make a transition to another state, e.g. withF = 1
(or F = 2). Such a transition changes the energy of thek-th spin; the energy conservation then
requires that thej-th spin is in the state withF = 1 (or F = 2). Thus, majority of states of the
P1 centers may flip very fast, while others preserve their state for long time, being pretty much
static.

At large magnetic field, the situation changes. The single-spin flips are prohibited: they do
not conserve energy. But even two-spin flip-flop processes are strongly suppressed. First, the
local hyperfine interaction at a P1 site (see Eq. S7) creates an extra field (+A1, −A1, or zero),
which is determined by the nitrogen’s nuclear spinIz

k ; the magnitude of this field also depends
on the type of the P1 center, sinceA1 is different for the centers of type 1 and the centers of type
2, 3, and 4. Thus, for thej-th bath spin to flip, it is necessary that thek-th spin has the value of
Iz
k equal toIz

j , and that these two centers have the sameA1. Second, at large magnetic field, the
internal Hamiltonian of the bath is renormalized, see Eq. S13, and different extra fields, created
by the NV center, act on different P1 centers. As a result, the dynamics of the bath spins at large
magnetic field is strongly suppressed, and only a few spins can change their orientation with
time.
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5 Analytical theory for decoherence dynamics of an NV cen-
ter

Exact microscopic calculations, based directly on Eqs. S3, S12, and S14 for zero magnetic field
(or Eqs. S4, S13, and S14 for large magnetic field) are too complex for analytics, and we use nu-
merical simulations described in Sec. 6. For analytical treatment, a simplified model is needed.
Below, we provide justification, and describe such a model. We consider the relevant experi-
ments (decay of Ramsey fringes, damping of Hahn spin echo, and decay of Rabi oscillations),
and show how our analytical model helps in understanding the results.

5.1 Description of the phenomenological model: justification and quali-
tative conclusions

We start from summarizing the results of the microscopic considerations given above. For zero
magnetic field, the Hamiltonian of the NV center coupled to the bath of nitrogen atoms, has a
form

H = BzS
z
0 + hxS

x
0 + HB (S16)

whereHB is the internal Hamiltonian of the bath (it includes both local Hamiltonians of the P1
centers and the dipolar interactions between them),hx = (1/2)g0µBHR, andBz = A0I

z
0 +ãkS̃

z
k .

For large magnetic field, the relevant Hamiltonian has a similar form

H = Bzs
z
0 + hxs

x
0 + HB (S17)

wherehx = (1/
√

2)g0µBHR, andBz = A0I
z
0 + ckS

z
k . Aside from the parameter values, the

only difference between these two Hamiltonians is that the central spinS0 = 1 at zero magnetic
field whiles0 = 1/2 at large magnetic field.

If we omit for a moment the bath’s internal HamiltonianHB, the exact solution of the
problem can be obtained by purely analytical means for both zero and large magnetic field. It
is important to recognize thatIz

0 is a constant of motion, and, ifHB = 0, Sz
k (or S̃z

k) are the
constants of motion, too. Thus, if thek-th bath spin was initially in the state| ↑〉, then it will
remain in this state, and the operatorSz

k in this case can be replaced by a c-number equal to
〈↑ |Sz

k | ↑〉 = 1/2. Thus,Bz in Eqs. S16 and S17 can be treated simply as some real number,
whose value depends upon the specific initial state of the bath. Finally, we must average over
all possible initial states of the bath; all these states are equally probable (at room temperature).
The corresponding distributionP (Bz) of the values ofBz is given by the central limit theorem
of the probability theory: it is a Gaussian distribution, with the mean equal toA0I

z
0 (i.e., to

+A0, −A0, or zero, with equal probability), and with the varianceb2 = (1/4)
∑

k c2
k (or, for

zero magnetic field,̃b2 = (1/4)
∑

k ã2
k). Thus, forHB = 0, it is a rigorously justified step to

replace the action of the static bath by the action of the static Gaussian random fieldBz.
In reality, when the internal bath dynamics determined byHB is not negligible, the bath

spins can change its orientation (flip), andSz
k is not an integral of motion anymore. In order
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to deal with this complication, we make an important approximation: we treat the bath in a
mean-field manner, assuming that the influence of the bath spins on the NV center can still be
approximated as the action of some random fieldBz, which now may depend on time. This
mean-field approximation is a standard (and probably, the most transparent) way for describing
a wide variety of NMR/ESR-like experiments, successfully used since the 1950s (S3, S4) until
present times (S5). Of course, applicability of the mean-field approximation requires an inde-
pendent confirmation. In our case, the validity of the model is confirmed by direct microscopic
numerical simulations, and by very good agreement with the experimental results. This is also
the reason why, in this work, we do not use more sophisticated approaches, which, for instance,
take into account two-spin correlations inside the bath (S5). Such approaches are less qualita-
tively clear than the mean field, but, unlike direct numerical simulations, still need to invoke
assumptions about the bath dynamics (e.g., that the 2-spin correlations are sufficient); check-
ing validity of these assumptions and development of such theories for NV centers requires a
separate detailed investigation.

In order to construct the correct model for the dynamics of the random fieldBz, we recall
(see Sec. 4.3) that the rate of flipping of a given nitrogen spin depends very strongly on the type
of this nitrogen atom, on the value of the parameterF (for zero magnetic field) or the value
of Iz

k of this atom (for large magnetic field), and on the state of its neighbors. Therefore, for
some spinsSz

k can be well approximated as static, while for other spins this approximation is
invalid. Moreover, whetherSz

k can be approximated as static depends on the coupling of the
k-th spin to the NV spin. This fact, derived during early days of the NMR/ESR theory (S6), can
be qualitatively explained as follows (for formal derivation, see the original work, Ref. S6). Let
us assume that the characteristic time for a flip of a given spin isτc, and the coupling constant is
∆k. This spin imposes a random time-varying field on the NV center, so that, after some time
t, the state|mS = +1〉 of the NV center acquires some phaseβ, while the state|mS = −1〉
acquires a phase−β. The quantity determining the decoherence rate is the average ofexp (iβ)
over all possible realizations of the random field; in Ref. S6, this average is denoted asvk(t).
The value ofvk depends on whether∆kτc À 1 or ∆kτc ¿ 1: in the former case, thek-th bath
spin is practically static, andvk(t) ≈ 1−∆2

kt
2/2, while in the latter case, thek-th spin is in the

regime of motional narrowing (S3,S4) with vk(t) ≈ exp (−∆2
kτct/2).

In a real bath, there are many spins with different∆k and differentτc. We simplify the
situation in the spirit of Ref. S6, assuming that the spins with∆kτc > 1 can be treated as static,
while the spins with∆kτc < 1 can be treated as being in the regime of complete motional
narrowing. Thus, the mean fieldBz acting on the NV center contains two components: one is a
static random Gaussian field with the meanA0I

z
0 and the varianceb2 (or b̃2, for zero magnetic

field), and the other is the fast Gaussian random field with the mean zero, varianceb2
1 (or b̃2

1)
and correlation timeτc such thatb1τc ¿ 1 (or, for zero magnetic field,̃b1τ̃c ¿ 1).

Based on our knowledge of microscopic Hamiltonians (see discussions in this Section above
and Sec. 4.3), we can make some qualitative conclusions about expected experimental results.
At large magnetic field, in comparison with the zero-magnetic field case, the majority of bath
spins are difficult to flip, and the spin correlation timeτc at large magnetic field should be larger
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than the correlation timẽτc at zero magnetic field. Moreover, the coupling coefficientsãk at zero
magnetic field are, in general, smaller than the coupling coefficientsck at large magnetic field.
Indeed, at zero magnetic field, due to the hyperfine coupling between the electron and nuclear
spins of a given nitrogen atom, the matrix elements of the operatorsSx,y,z

k are significantly
smaller than 1/2, see Eqs. S10. At large magnetic field, no such renormalization exist, and the
coupling coefficientsck are, on average, larger thanãk. Thus, at large magnetic field, more
spins satisfy the inequality∆kτc > 1, i.e., at large magnetic field the majority of spins is
static. Therefore, the value ofb should be larger thañb, while b1 should be smaller thañb1.
This is exactly what we observe in experiments. Furthermore, we expect that, qualitatively, the
Ramsey fringes decay should be faster at large magnetic fields (where the static component of
the bath field is larger), while the decay of Hahn spin echo should be faster at zero magnetic
field (where the dynamic component of the bath field is larger). Again, this is what we observe
in experiments.

Here, we do not go beyond these qualitative conclusions: development of a detailed micro-
scopic theory for the bath parameters (b andb̃, b1 andb̃1, etc.) is not a main topic of our work.
Such a theory would involve many complications: the bath spins in our case are complex enti-
ties, the interaction coefficients have complex dependence on the internal state of the nitrogen
atoms and on the position of a given nitrogen atom, etc. (e.g., note that in the workS6the de-
pendence of∆k on the direction of the vectornk is neglected). A detailed theory of this kind has
been developed, e.g., for decoherence of a spin-1/2 P donor by a bath of29Si spins 1/2 (S5), but
even for that simpler bath the description is very complex. Development of similar description
for NV centers would require a separate investigation. Therefore, everywhere below we treat
the bath parameters as phenomenological quantities, which are extracted from experiments.

5.2 Analytical solution for the Ramsey fringes experiments

We first consider the decay of Ramsey fringes; this experiment is equivalent to the free induction
decay in NMR/ESR. The NV center is prepared in the state|mS = 0〉, and aπ/2 pulse is applied
along thex-axis. We assume that theπ/2 rotation is ideal (the width of the pulse is of order of
10 ns, and the influence of the fieldBz during this interval can be neglected). At zero magnetic
field, the initial state is

|ψ0〉 = − i√
2

(|mS = 1〉+ |mS = −1〉) , (S18)

In the absence of driving (hx = 0), the evolution of this state is easy to calculate: after timet,
the state|mS = 1〉 acquires a phaseβ =

∫ t
0 Bz(s)ds, while the state state|mS = −1〉 acquires

a phase−β. Then, anotherπ/2 pulse is applied, and the populationp0(t) of the state|mS = 0〉
is measured, which is equal top0(t) = (1 + cos 2β)/2; this value should be averaged over all
possibleβ to give the experimentally detected average value〈p0(t)〉. In our model,Bz is a
sum of two components, staticBs

z and dynamicBd
z (t), and their contributions toβ are additive.
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Therefore, we can first perform averaging over the static component, obtaining

〈p0(t)〉s =
1

2
+

1

6
[1 + 2 cos 2A0t] exp (−2b̃2t2), (S19)

where〈·〉s reminds that an averaging overBd
z (t) still should be performed. For large magnetic

field, after theπ/2 pulse, the state of the NV center is(1/
√

2)[|mS = 0〉 − i|mS = −1〉]. The
calculations of〈p0(t)〉s can be done in a similar way, and the answer is:

〈p0(t)〉s =
1

2
− 1

6
[1 + 2 cos A0t] exp (−b̃2t2/2). (S20)

Note that for zero magnetic field,〈p0(0)〉 = 1, since two subsequentπ/2 pulses bring the state
|mS = 0〉 back to|mS = 0〉, while for large magnetic field, twoπ/2 pulses transfer|mS = 0〉
to |mS = −1〉. The free induction decay (FID) given by Eqs. S19 and S20 has a Gaussian form
exp (−t2).

Now, we should perform an average over the dynamic componentBd
z (t). This calculation

is a part of standard NMR/ESR theory (S3, S4). For our problem, it can be shown that the
averaging overBd

z (t) leads simply to multiplying the〈p0(t)〉s by a factorexp (−b2
1τct/2) (or

exp (−b̃2
1τ̃ct/2)). In the next subsection, we show that this is exactly the factor which determines

the attenuation of the Hahn spin echo. Thus, expressing the decay of Ramsey fringes in terms
of experimentally measured quantities, we have:

〈p0(t)〉 =
1

2
+

1

6
[1 + 2 cos 2A0t] exp [−2b̃2t2] exp (−t/T̃2), (S21)

for zero magnetic field, wherẽT2 denotes the decay time of the Hahn spin echo at zero magnetic
field, and

〈p0(t)〉 =
1

2
− 1

6
[1 + 2 cos A0t] exp (−b̃2t2/2) exp (−t/T2), (S22)

for large magnetic fields, whereT2 is the decay time of the Hahn spin echo at large magnetic
field.

5.3 Analytical results for Hahn spin echo decay

In the Hahn spin echo experiments, after applying the firstπ/2 pulse, we let the system evolve
during the time intervalτ , then apply theπ pulse, wait for another timeτ , and then apply the
secondπ/2 pulse followed by the readout ofp0(t). To analyze the Hahn spin echo theoretically,
we note that during the intervals of free evolution between the pulses, the contributions to the
phaseβ from Bs

z andBd
z are additive, and can be analyzed separately. The effect of the static

component is removed completely by theπ pulse: the phase acquired due toBs
z during the first

intervalτ is equal in magnitude, and opposite in sign, to the phase acquired due toBs
z during

the second intervalτ .
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Calculation of the effect of the dynamic component is also a standard part of NMR/ESR
theory (S3,S4), and the answer is known: for the extreme motional narrowing regime, the decay
of the Hahn spin echo is the same as the free induction decay (Ramsey fringes decay); denoting
t = 2τ , we obtain:

〈p0(t)〉 =
1

2
+ exp (−b̃2

1τ̃ct/2) =
1

2
+ exp (−t/T̃2), (S23)

for the zero magnetic field, and

〈p0(t)〉 =
1

2
+ exp (−b2

1τct/2) =
1

2
+ exp (−t/T2), (S24)

for large magnetic field. Indeed, in the motional narrowing regime, the bath fluctuations are fast,
and the effect of theπ pulse is quickly forgotten. Note that the measurements of the Ramsey
fringes and Hahn spin echo decay do not allow reliable determination of bothb1 andτc (or b̃1

andτ̃c): only their combinationb2
1τc determines the observable quantityT2.

5.4 Rabi oscillations

Theoretical analysis of the Rabi oscillations is facilitated if performed in the rotating frame,
which rotates with the frequency of the driving fieldHR; in this way, the NV center Hamiltonian
is static, see Sec. 3.1 and 3.2. Furthermore, in order to observe well-defined Rabi oscillations,
a rather large driving fieldHR is needed: otherwise, the decay time of the oscillations will be
of the same order as an oscillation period. Thus, we perform analysis assuming thathx À Bz

andhxτc À 1. These assumptions are not unavoidable: it is possible also to study analytically
other situations with slowly decaying oscillations, but the results of different calculations agree
with each other, while the approximation of largehx allows to give a clear qualitative picture of
underlying physics.

First, we note that, for the purposes of the present work, the influence of the dynamical
component ofBz can be neglected. Qualitatively, it is a very natural result: the Rabi rotation
of the spinS0 aroundhx is the fastest process, which averages out the fieldBz. If the dynamic
part of Bz is sufficiently slow, much slower than the rotation ofS0 (i.e., hxτc À 1), then it
just introduces an extra averaging, which is small in comparison with the averaging due to fast
Rabi rotation. This conjecture can be confirmed by explicit calculations within the random-field
approximation (S12); neglecting the dynamic part ofBz is confirmed as a good approximation
by the agreement with the numerical simulations (which do not neglect the bath dynamics) and
with the experimental results.

At zero magnetic field, the relevant Hamiltonian is

H = BzS
z
0 + hxS

x
0 (S25)

with Bz being a static Gaussian field with meanA0I
z
0 and variancẽb. The time evolution

operator for this Hamiltonian can be found exactly for any givenBz:

U = 1+(cos Ωt−1)
[
(2/3) + 2uxuzQ

xz
0 + u2

xQ
xx
0 + u2

zQ
zz
0

]
− i [uxS

x
0 + uzS

z
0 ] sin Ωt, (S26)
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whereΩ =
√

B2
z + h2

x, ux = hx/Ω, uz = Bz/Ω, andQαβ
0 = (1/2)[Sα

0 Sβ
0 + Sβ

0 Sα
0 ]− (2/3)δαβ

are the quadrupolar operators.
In the limit of hx À b̃, for times larger thañb−1, one can show that it is sufficient to expand

Ω up to second order inBz/hx, and neglectBz everywhere else (i.e., takeuz = 0 andux = 1).
The probabilityp0(t) then has a very simple form:

p0(t) = cos2 Ωt (S27)

and should be averaged over all possibleBz, which has a distibution

P (Bz) = (1/3)(P+ + P− + P0), (S28)

whereP+,−,0 are all Gaussians with the varianceb̃, and mean+A0 for P+,−A0 for P−, and zero
for P0. These three Gaussians correspond tomI = +1, mI = −1, andmI = 0 respectively,
and the average〈p0(t)〉 is an arithmetic average of three contributions. The contribution from
mI = 0 part is a slowly decaying phase-shifted oscillation:

〈p0(t)〉0 =
1

2
+

1

2

[
1 + 4

b4t2

h2
x

]−1/4

cos (2hxt + φ) (S29)

where the phase shift isφ = (1/2)arctan(2b2t/hx). Note that the decay at long times is of
power-law form∝ 1/

√
t, and has noticeable amplitude even at very large times. Such an

interesting decay has been noticed in earlier works (S13) (see also Refs. 8–10 of the main text),
and signatures of this behavior have been recently observed in quantum dots (S14).

The contributions from the partsmI = +1 andmI = −1 are equal to each other, and have
the form:

〈p0(t)〉± =
1

2
+ (1 + ξ2)−1/4 exp

[
−(1/2)v2ξ2/(1 + ξ2)

]
cos [2hxt + Φ] (S30)

Φ = v2ξ + φ− (1/2)v2ξ3/(1 + ξ2)

where we introduced the ”dimensionless time”ξ = 2b̃2t/hx, the quantityv = A0/b, and the
phaseφ = (1/2)arctanξ = (1/2)arctan(2b2t/hx) is the same as above.

Inspection of Eq. S30 shows that〈p0(t)〉± is a product of two decaying functions and one
oscillating cosine with time-varying phase. One decaying function is the same power-law1/

√
t

decay (the term(1 + ξ2)−1/4) which appeared in Eq. S29, and the other one is the exponent
which saturates att → ∞ at the valueexp (−v2/2). At zero magnetic field, wheñb ¿ A0,
the Eq. S30 is considerably simplified: in this casev À 1, and all terms which do not involve
v (except for the large phase2hxt) can be neglected. The result is a simple Gaussian decay of
oscillations

〈p0(t)〉± =
1

2
+

1

2
exp

[
−2A2

0b̃
2t2/h2

x

]
cos 2hxt (S31)

with the characteristic decay timehx/(A0b̃).
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This result is very natural (see also Fig. 3 and accompanying part of the main text). For
mI = 0, the Rabi fieldhx is perpendicular to theBz field, and the fast rotation ofS0 around
hx completely averages outBz in the first order. The effect ofBz is seen only in the second
order (the decay time in Eq. S29 is of order ofb̃2/hx), and this effect is small, leading to a slow
power-law decay. FormI = ±1, due to the finite mean±A0, the Rabi fieldhx is not exactly
perpendicular toBz, and the part ofBz which is not averaged by fast Rabi rotation leads to a
standard Gaussian decay.

When we sum the contributions from all three values ofmI , an interesting effect takes
place. The oscillations of〈p0(t)〉0 decay very slowly, but have a time-varying phase, while the
oscillations of〈p0(t)〉± decay rather fast. Thus, at some moment of time, the term〈p0(t)〉0 can
be equal to twice〈p0(t)〉± but have an opposite sign. In this case, the total〈p0(t)〉 would be
equal to zero. Correspondingly, Rabi oscillations around that time would demonstrate a dip.
Later, as〈p0(t)〉± decay further, this dip would disappear, reviving the Rabi oscillations.

The model has two free parameters for the Rabi oscillations (dynamical spin bath compo-
nents are neglected): the driving field and the width of the dipolar field distributionb. In order
to compare the model to a given Rabi oscillation experiment, we determine the driving field
from the frequency of the Rabi oscillations at large pulse widths. The widthb is determined in-
dependently from a Ramsey experiment. As shown in Fig. 3 of the main text, the main features
of the experiment are reproduced in detail by the model. In Figs. S2 and S3 the dependence
on the driving frequency is investigated. The experimentally observed shift of the collapse to
longer pulse widths for higher driving frequencies is also seen in the analytical model. Small
deviations between the model and the experiment, such as the slightly faster long-time decay
in the experiment, may be explained by the dynamical components of the bath neglected in the
model. The fact that the numerical simulations, which include the dynamical components, are
closer to the experiment in this respect seems to confirm this.

At large magnetic field, when the NV center is described by a pseudo-spins0 = 1/2, the
analysis can be performed in exactly the same way. In this case, for a givenBz,

p0(t) = cos2 Ωt/2 (S32)

and, up to replacingt → t/2, is the same as in the zero-magnetic field case, Eq. S27. Thus
all results above remain the same, with the obvious modificationb̃ → b. In particular, the
contribution ofmI = 0 has the same form of slowly decaying (1/

√
t) oscillations with the time-

varying phase. However, at large magnetic fieldsA0 ∼ b, and the contributions ofmI = ±1
do not differ crucially from the contributions ofmI = 0. Instead, the parts of theP (Bz)
distribution which are closer to zero have smaller value ofv, and their decay is more of a
power-law form, while the parts which are farther from zero have larger value ofv, and their
decay is faster, closer to the fast Gaussian decay. The corresponding experiment is shown in
Fig. 4.

A few remarks are in order:
First, we note here that the Eqs. S29 and S31 can be obtained (with insignificant modifica-

tions) also in other cases, e.g. whenhx ∼ A0, hx À b. The derivation above was chosen only
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because it is physically more transparent, and allows to discuss the zero-magnetic field and the
large-magnetic field cases on equal footings.

Second, it is worthwhile to note that exactly the same results can be obtained if, instead of
the random fieldBz, we had considered the full quantum bath (i.e., consideredBz as an opera-
tor) but assumming that the bath is static (HB = 0). Consequently, in case of Rabi oscillations,
again, the full quantum static bath is rigorously equivalent to static random field.

Finally, we briefly comment on the Rabi oscillations at 514 G, which demonstrate an in-
teresting two-frequency pattern. At this magnetic field, the frequency of the Rabi driving field
equals the transition frequency of both NV center, and the nitrogen atoms. However, the term
describing the response of the NV center to the Rabi field (in the rotating frame) is of the form
(1/
√

2)g0µBHRsx
0 , see Eq. S4. At the same time, the response of the nitrogen spins to the Rabi

field is
√

2 times smaller. This corresponds to the experimental observations: the second Rabi
frequency of the NV center is

√
2 times smaller than its ”native” frequency, and corresponds

to the Rabi frequency of the nitrogen atoms. The fact that the second frequency is present at
very early times, of order of 0.1µs, strongly suggests that already at zero time, an entangle-
ment between the NV center and the nitrogen spins is present. The detailed description of this
entangled state and its dynamics is currently under development.

6 Microscopic theory: Numerical simulations

The numerical simulations have been performed in the rotating frame, starting directly from the
Hamiltonians given by Eqs. S3, S12, and S14 for zero magnetic field, and Eqs. S4, S13, and
S14 for large magnetic field. The nuclear spins of the NV center and of the nitrogen P1 centers
have been explicitly taken into account, as well as the dipolar interactions between the nitrogen
spins.

The NV center was placed at the origin of the coordinate frame, and the nitrogen atoms have
been randomly placed around the NV center. The distances to the nitrogen atoms have been all
scaled by the same factor, to give the experimentally measured decay time of Ramsey fringes;
this scaling factor is the only adjustable parameter in the numerical simulations. In this way, we
obtained the correct local density of bath spins. Note that we did not average over positions of
the nitrogens: such an averaging would correspond to the ensemble of the NV centers, and, as
we discussed in Sec. 5.2, would not be correct for a measurement of a single NV center.

The state of the system was described by an exact many-spin wavefunction, including both
the NV center and the nitrogen atoms. Initially, the state of the NV center was|mS = 0〉, while
the bath spins were in a random superposition of all possible bath basis states. This superpo-
sition state gives an excellent (exponentially accurate) approximation for the experimentally
relevant state of the bath (maximally mixed, with the density matrix proportional to the identity
matrix) (S15).

The dynamics of the system was simulated using an expansion of the time-evolution opera-
tor exp (−itH) in terms of Chebyshev polynomials (S15). The number of nitrogen atoms was
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varied fromN = 4 to N = 6. Simulations of larger systems is demanding, since the total num-
ber of basis states is large. For a single nitrogen atom, we need six basis states (two electron
spin states, three nuclear spin states), so that the simulations withN = 6 involve 140,000 basis
states (' 47, 000 basis states for the bath, multiplied by three basis states for the NV spin). At
the same time, the simulation timestep should be kept small due to the large value of the Rabi
driving fieldHR, so that the total number of timesteps is large.

Moreover, we took into account the fact that each nitrogen can have different directions of
the delocalization axis. The directions of the delocalization axes were randomly assigned for all
nitrogens, and the averaging over 10 realizations was taken. Also, we performed averaging over
three possiblez-projections of the nuclear spin of the NV center; this projection is a constant of
motion.

The simulations have been performed for all three types of relevant experiments: Ramsey
fringes decay, Hahn spin echo decay, and damping of the Rabi oscillations. Fig. S4 shows
simulations of the Hahn spin echo and the Ramsey experiment, for the same configuration of
the P1 centers as in the simulation shown in Fig. 3. Fitting the simulations with our model
equations yields values for bothT2 and b that agree with those of NV14 within error bars.
Therefore, our analytical model and the numerical simulations seem to provide good description
for decoherence of the NV centers, which is also reflected in the agreement between experiment
and simulation in the Rabi oscillations.
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Supplementary Figure Captions 

 

Figure S1.  Spin echo measurements.   

(A) Pulse sequence for the spin echo measurements. (B) Spin echo signal of NV31 at B = 

0 G as a function of τ2 for different τ1. (C) Measurement of coherence time T2 of NV31 

using the spin echo pulse scheme of (A) with τ1 = τ2 = τ. Fitting the data to exp(-2τ/T2) 

yields T2 = (0.62 ± 0.09) μs at B = 0 G and T2 = (5.0 ± 0.5) μs at B = 740 G. 

 

Figure S2.  Comparison of experiment with analytical model for Rabi oscillations of 

NV14 at B =0 G. 

Experimental Rabi oscillations of NV14 (top panels) and calculations using our analytical 

model (bottom panels) with b = 0.42 MHz, for driving frequencies of (A) 11.7 MHz, (B) 

21.4 MHz, and (C) 25.6 MHz. 

 

Figure S3.  Comparison of experiment with analytical model for Rabi oscillations of 

NV31 at B =0 G. 

Experimental Rabi oscillations of NV31 (top panels) and calculations using our analytical 

model (bottom panels) with b = 0.47 MHz, for driving frequencies of (A) 12.1 MHz, (B) 

15.3 MHz, and (C) 20.5 MHz. 

 

Figure S4.  Numerical simulation of spin echo and free evolution at B = 0 G. 

Numerical simulations of the dynamics of a single NV spin surrounded by a bath of six 

nitrogen impurities at B = 0 G (see text). (A) Spin echo experiment. Fitting the numerical 

results yields T2 = (0.41 ± 0.2) μs. (B) Free evolution. Fitting the numerical results with 

the value for T2 found from (A) gives b = (0.37 ± 0.02) MHz. 

 

 



Figure S1. Hanson et al. 
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Figure S2. Hanson et al. 
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Figure S3. Hanson et al. 
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Figure S4. Hanson et al. 
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