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One of the most striking features of quantum mechanics is the
profound effect exerted by measurements alone. Sophisticated
quantum control is now available in several experimental systems,
exposing discrepancies between quantum and classical mechanics
whenever measurement induces disturbance of the interrogated
system. In practice, such discrepancies may frequently be explained
as the back-action required by quantummechanics adding quantum
noise to a classical signal. Here,we implement the “three-box” quan-
tum game [Aharonov Y, et al. (1991) J Phys AMath Gen 24(10):2315–
2328] by using state-of-the-art control and measurement of the ni-
trogen vacancy center in diamond. In this protocol, the back-action
of quantum measurements adds no detectable disturbance to the
classical description of the game. Quantum and classical mechanics
then make contradictory predictions for the same experimental pro-
cedure; however, classical observers are unable to invoke measure-
ment-induced disturbance to explain the discrepancy. We quantify
the residual disturbance of our measurements and obtain data that
rule out any classical model by T7.8 standard deviations, allowing
us to exclude the property of macroscopic state definiteness from
our system. Our experiment is then equivalent to the test of quan-
tum noncontextuality [Kochen S, Specker E (1967) J Math Mech
17(1):59–87] that successfully addresses the measurement detect-
ability loophole.
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Classical physics describes the nature of systems that are “large”
enough to be considered as occupying one definite state in an

available state space at any given time. Macrorealism (MR)
applies whenever it is possible to perform nondisturbing mea-
surements that identify this state without significantly modifying
the system’s subsequent behavior (1).MRallows the assignment of
a definite history (or probabilities over histories) to classical sys-
tems of interest, but theMR condition can break down for systems
“small” enough to be quantum mechanical during times “short”
enough to be quantum coherent: times and distances that now
exceed seconds (2) and millimeters (3) in the solid state. How can
we tell whether a particular case is better described by quantum
mechanics (QM) or MR? If there is a crossover between these,
what does it represent?
One explanation for the breakdown of MR is that measurement

back-action (either deliberate measurements by an experimenter
or effective measurements from the environment) unavoidably
change the state in the quantum limit, excluding MR due to
a breakdown of nondisturbing measurability. This position is
supported by “weak value” experiments (4, 5) that explore the
transition from quantum to classical behavior as a measurement
coupling is varied. Quantum behavior is found under weak cou-
pling, whereas MR-compatible behavior is recovered when strong
projective measurements effectively “impose” a classical value
onto the measured quantum system (4).

We examine a case in which the back-actions of sequential
“strong” projective measurements impose new quantum states
that provide no detectable indication of disturbance to a “macro-
realist” observer. We show that these states are still incompatible
with MR, however, because no possible MR-compatible history
can be assigned to the process as a whole. Our experiment can be
described as a game played by two opponents (Alice and Bob)
who take alternate turns to measure a shared system. The system
they share may or may not obey the axioms of MR. For the
purposes of the game, Bob assumes he may rely on the MR
assumptions being true and only Alice is permitted to manipu-
late the system between measurements. If Bob is correct to as-
sume MR holds, the game they play is constructed in his favor;
however, “paradoxically,” the exact same sequence of operations
will define a game that favors Alice when a quantum-coherent
description of the system is valid (6).
Experimentally, we use the 14N nuclear spin of the nitrogen

vacancy (14NV−) center (S = 1, I = 1) in diamond as Alice and
Bob’s shared system, enabling us to maintain near-perfect unde-
tectability by Alice of Bob’s observations. The experiment involves
pre- and postselection (5, 7) on a three-level quantum system that
is known to be equivalent to a Kochen–Specker test of quantum
noncontextuality (8). Such tests are only possible in d ≥ 3 Hilbert
spaces (9); here, we use recent advances in the engineering (10)
and control (11) of the NV− system that enable the multiple
projective nondemolition measurements that are crucial to ob-
serving Alice’s quantum advantage in the laboratory. We describe
the game (12) and Bob’s verification of it from the MR perspec-
tive, and we then discuss the experiment and results from the QM
position. We quantify the incompatibility of our results with MR
through use of a Leggett–Garg inequality (1) and discuss the
implications of our result.
In the “three-box” quantum game (12), Alice and Bob each

inspect a freshly prepared three-state system (classically, three
separate boxes hiding one ball) using an apparatus that answers
the question “Is the system now in state j?” (“Is the ball in box j?”)
for j = 1, 2, 3 by responding either “true” (1) or “false” (0). The
question is answered by performing one of three mutually or-
thogonal measurements Mj. The game allows Bob a single use of
eitherM1 orM2. Alice is allowed to use onlyM3, and, additionally,
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she is allowed to manipulate the system. Alice is allowed one turn
(a manipulation either before or after anM3 measurement) before
Bob to prepare the system and one turn following him. Alice
attempts to guess Bob’s measurement result, and the pair bet on
Alice correctly answering the question, “Did Bob find hisMj to be
true?” Alice offers Bob ≥50% odds to predict when hisMj is true,
although she may “pass” on any given round at no cost when she
is undecided.
Bob realizes that if the Mj measurements are performed on

a system followingMR axioms, Alicemust bet incorrectly≥50% of
the time, even if Alice could “cheat” by knowing which j-value will
be presented (classically, knowing which box contains the ball);
with three boxes and his free choice between M1 and M2, Alice is
prevented from using her prior knowledge to win with a >50%
success rate. Bob expects to win if theMjmeasurements reproduce
the behavior of a ball hidden in one of the three boxes. The con-
ditions for this are (a) the Mj measurements are repeatable and
mutually exclusive, such that Mj ∧ Mk = δjk (classically, the ball
does not move whenmeasured); (b) for any trial,M1 ∨M2 ∨M3= 1
(there is only one ball, and it is definitely in one of the boxes); (c)
Bob has an equal probability of finding each j-value when mea-
suring a fresh state, with PMjðBÞ =  1=3 j ∈ 1; 2; 3 (the ball is
placed at random); and (d) Alice has no additional means to de-
termine which, if any, Mj measurement Bob has chosen to per-
form. The conditions a–d serve to prevent Alice from learning
Bob’s Mj result in any macroreal system. Before accepting Alice’s
invitation to play, Bob verifies that properties a–d hold experi-
mentally by carrying out Mj measurements. During verification,
the game rules are relaxed and Bob is permitted to make pairs of
sequential measurements, checking Mj ∧ Mk = δjk. He is also
allowed to measure everyMj, includingM3, which will be reserved
for Alice once betting commences, or he may opt to perform no
measurement at all and monitor Alice’s response to determine if
she can detect a disturbance caused by his measurement (SI Text).
When Bob is satisfied that a–d hold, the game appears fair from

his macrorealist standpoint. Bob accepts Alice’s wager, and play
commences with Alice preparing a state, which Bob measures
using either M1 or M2, while keeping his j-choice and Mj result
secret. Alice manipulates the system, uses her M3 measurement,
and bets whenever herM3 result is true. Believing that Alice could
only guess his secret result, Bob accepts Alice’s wager. Doing so,
he finds that Alice’s probability of obtaining a true M3 result is
PM3ðAÞ ’ 1=9, independent of his j-choice between M1, M2, or
no measurement. Under MR, Bob could account for this only
through Alice using a nondeterministic manipulation that would
reduce the information available to her from the M3 result. To
Bob’s surprise, when Alice plays, her trueM3 results coincide with

the rounds on which Bob’s Mj-result was also true. She passes
whenever Bob’s Mj result was false. In a perfect experiment, she
would win every round she chose to play; in our practical re-
alization, she achieves significantlymore than the 50% success rate
that would be predicted by MR. To understand Alice’s advantage,
we must examine the game from a QM perspective.
Alice uses the initial M3 measurement to obtain the pure

quantum state j3〉, passing on all rounds in which her initial M3
measurement is false. She applies the unitary ÛI, which operates
as ÛI = jIih3j+ ðorthogonal termsÞ, to produce the initial state:

jIi= j1i+ j2i+ j3i
ffiffiffi

3
p [1]

Her first turn presents the state jI〉 to Bob, who next measures
Mj on jI〉, performing a projection. If Bob’s Mj result is true, he
has applied the quantum projector P̂j = jjihjj, and by finding anMj

result that is false, he has applied P̂
⊥
j =   1 − jjihjj. Alice uses her

final turn to measure the component of the state left by Bob’s
measurement along the state jFi= ðj1i+ j2i− j3iÞ= ffiffiffi

3
p

. Bob’s
projectors on Alice’s initial and final states jI〉 and jF〉 obey:
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for both j = 1 and j = 2. Alice cannot directly measure jF〉 but is
able to transform state jF〉 into state j3〉 with a unitary ÛF =
j3i  hFj+ ðorthogonal termsÞ, and she uses her measurement of
M3 as an effective MF measurement. Alice therefore obtains
M3-true when Bob’s Mj result is true with probability PM3ðA∩BÞ=
jh3jÛFP̂jÛIj3ij2 = jhFjP̂jjIij2 = 1=9 and whenBob’sMj result is false

with probability PM3 ðA∩:BÞ= jh3jÛFP̂
⊥
j ÛIj3ij2 = jhFjP̂⊥

j jIij2 = 0.
Alice finds that her M3 result being true is conditional on Bob
leaving a component of jψ j〉 along jF〉; to do so, hisMj result cannot
have been false. Alice’s probability conditioned on Bob is then
PMjðBjAÞ= 1. Alice bets whenever her M3 result is true, playing
one-ninth of the rounds and winning each round she plays.

Materials and Methods
Our implementation of this game uses the NV− center, which hosts an ex-
cellent three-level quantum system for the three-box game: the 14N nucleus,
which has (2I + 1) = 3 quantum states (Fig. 1A). Although we cannot (yet)
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Fig. 1. Three-box game is implemented using the 14N nuclear spin of the NV− center in diamond, measured using the electron spin. (A) Schematic of the NV−

defect in diamond and representative diamond lens used in the measurements. (B) Magnetic moment of the electron spin is quantized into one of three
values: mS = −1, 0, or +1. These states split into a further three (mI = −1, 0, or +1) according to the magnetic moment of the 14N nuclear spin. The mS = ±1
states fluoresce via the A1 transition, whereas mS = 0 fluoresces via the Ex transition. We use the mS = −1 manifold to hold the three states in the game,
conditionally moving the state between mS = −1 and mS = 0 dependent on the nuclear spin sublevel mI. These three mI states are taken to correspond to the
configurations of a hidden ball. (C) We identify the allowed microwave transitions (ΔmS = 1, ΔmI = 0) that provide the Mj readouts. (D) Photon counting
statistics, in each case from 10,000 trials, observed during a typical projective readout indicate the presence (Upper) or absence (Lower) of optical fluores-
cence, corresponding to outcomes Mj and :Mj, respectively.
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superpose a physical ball under three separate boxes, real-space separation
is not essential to the three-box argument. Alice and Bob can bet on any
physical property of a system for which MR assigns mutually exclusive out-
comes; for instance, a classical gyroscope revolving about one of three pos-
sible axes is not simultaneously revolving about the second and third axes. By
using rf pulses (13), we can readily prepare the 14N angular momentum into
a superposition of alignment along three distinct spatial axes, providing three
“box states” that are presumed to be mutually exclusive in the macrorealist
picture. We work in the electron spin mS = −1 manifold and assign eigen-
values of nitrogen nuclear spinmI to the box-states j according to (a) jmI = −1〉
∼ jj = 1〉, (b) jmI = +1〉 ∼ jj = 2〉, and (c) jmI = 0〉 ∼ jj = 3〉 (Fig. 1B).

Preparation and readout of the 14N nuclear spin is provided via the NV−

electronic spin (S = 1). We use selective microwave pulses to change mS

conditioned on mI, reading out the electron spin in a single shot and with
high fidelity (11), by exploiting the electron spin-selective optical transitions
of the NV− center. The spin readout achieves 96% fidelity and takes ≈20 μs,
which is much shorter than the nuclear spin inhomogeneous coherence
lifetime of T2* � 1 ms at T = 8.7 K, enabling three sequential readout
operations during a single coherent evolution of the system, as required for
our three-box implementation. We achieve all steps of the quantum ex-
periment well within the coherence time of our system, and therefore make
no use of refocusing rf pulses.

The full experimental sequence is shown in Fig. 2, with further details
provided in SI Text. The initial state j3〉 is prepared by projective nuclear spin
readout using a short-duration (’200 ns) optical excitation. The subsequent
experiment is then conditioned on detection of at least one photon during
the preparation phase, which heralds j3〉 with T95% fidelity (Fig. 1D) at the
expense of (1% preparation success rate. Once j3〉 is heralded, all sub-
sequent data are accepted unconditionally. After initialization, Alice trans-
forms the state j3〉 into jI〉 via two rf pulses (SI Text) and hands the system to
Bob, who measures M1 or M2. A further four rf pulses transform jF〉 to j3〉,
and Alice performs her final M3 measurement while statistics about Alice
and Bob’s relative successes are recorded.

We quantify the discrepancy between MR and QM by constructing
a Leggett-Garg function for our system, defined as

ÆKæ= ÆQ1Q2æ+ ÆQ2Q3æ+ ÆQ1Q3æ [4]

where Qj are observables of our system with values ±1, recorded at three
different times, derived from Alice and Bob’s measurements (1). We assign
Qj = +1 whenever an M3 result is true (or could be inferred true in the MR
picture) and assign Qj = −1 otherwise. The initially heralded state j3〉 fixes
the value of Q1 = +1 always, and values for Q2 and Q3 are taken directly
from Bob and Alice’s measurement results. The Leggett–Garg function is
known to satisfy −1 ≤ 〈K〉 ≤ +3 for all MR systems (1), and for the present
system, we can show that 〈K〉 is related to Bob and Alice’s statistics (SI Text)
as follows:

ÆKæ=
4
9
ð1− PM1 ðBjAÞ− PM2 ðBjAÞÞ− 1 [5]

where PMj ðBjAÞ is the probability that Bob finds theMj result true, given that
Alice has also found her final M3 result true. MR asserts that M1 and M2 are
mutually exclusive events, whereas QM does not, such that:

MR :  PM1 ðBjAÞ+ PM2 ðBjAÞ≤ 1 [6]

QM :  PM1 ðBjAÞ+ PM2 ðBjAÞ≤ 2 [7]

Under QM assumptions, Eq. 5 satisfies ÆKæ≥−13=9= −1:4 _4, possibly lying
outside the range compatible with MR.

Results
Bob picks a secret j-value andmaps the corresponding nuclear spin
projection to the electron spin by applying a microwave π-pulse to
drive a transition from one of the mS = −1 states (jj〉 is j1〉 or j2〉)
into the mS = 0 manifold. He then uses optical measurement of
the Ex fluorescence to determine mS. Absence of fluorescence
(“Ex-dark” NV−) implies :Mj and collapses the electron state into
mS = −1 while performing P̂

⊥
j on the nuclear spin (Fig. 3A, ii). We

find that nuclear spin coherences withinmS=−1 are unaffected by
the :Mj readout process.
Detection of n ≥ 1 photons during Bob’s 20-μs readout projects

the electron into mS = 0 and corresponds to an Mj result that is
true. In such events, there is an ’70% chance the electronic spin
will be left in an incoherent mixture ofmS = ±1 following readout,
due to optical pumping (11). Conditional on Bob’s Mj result being
true, we take care to undo the mixing effect as follows. We first
pump the electron spin to mS = 0 by selective optical excitation of
mS = ±1 (via a laser resonant with the A1 transition), followed by
driving a selective a microwave pulse frommS = 0 tomS = −1 (Fig.
1C). This procedure is effective because the optical fluorescence
preserves the nuclear spin populations mI that encode the game
eigenstates in T70% of cases (Fig. 3B). Bob performs repeated
pairs of measurements, verifying from a macrorealist’s perspective
that performingMj is equivalent to opening one of the three boxes
containing a hidden ball. Bob finds the probability for each Mj
is ’ 1 =

3 (Fig. 3A, i). Bob performs consecutive Mj observations and
verifies that finding Mj (:Mj) true on one run implies that the
subsequentmeasurement ofMj (:Mj) will also be true (Fig. 3 B and
C), gathering statistics over n = 1,200 trials for each combination.
Once Bob has measured in secret, Alice predicts his result by

mapping jF〉 to j3〉 and performingM3. Alice accomplishes this via:
jF〉 → jI〉 → j3〉. The Berry’s phase associated with 2π rotations
(14) provides the map jF〉 → jI〉 via two rf pulses that change the
signs of the {j1〉, j3〉} and then {j2〉, j3〉} states. State j3〉 then
acquires two sign changes yielding jF〉 up to a global phase. The
map Û

−1
I from jI〉 to j3〉 is then achieved by inverting the order and

phase of Alice’s initial ÛI pulses (SI Text).
Alice and Bob compare their measurement results during n =

2 * 1,200 rounds of play, distributed evenly across Bob’s two
choices of Mj measurement, as well as during a further 1,200
rounds in which Bob performs no measurement whatsoever.
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Alice finds her final M3 result is true in ’15% of cases, in-
dependent of Bob’s choice of measurement context between M1
and M2 or neither measurement (Fig. 4A). Among those ’15%
of cases in which Alice’s M3 result is true and she chooses to bet,
Bob finds she wins T67% of such rounds for either of Bob’s
choices between measuring M1 and M2 (Fig. 4B), confounding
the macrorealist expectation. The principle source of error in
our experiment arises from imperfect control of the nuclear spin
(SI Text).
We quantify the Leggett–Garg inequality violation in our ex-

periment by determining 〈K〉 from estimates of PMjðBjAÞ, finding
〈K〉 = −1.265 ± 023, corresponding to a ’11.3 σ-violation of the
Leggett–Garg inequality under fair sampling assumptions and to
a ’7.8 σ-violation in a “maximally adverse”macrorealist position
in which all undetermined measurements are assumed to repre-
sent Alice “cheating” and are reassigned to minimize the dis-
crepancy between QM and MR predictions (SI Text).

Discussion
Our results unite two concepts in foundational physics: Leggett–
Garg inequalities (1) and pre- and postselected effects (7) in
a quantum system to which the Kochen–Specker no-go theorem
applies (9). Previous experimental studies of the Leggett–Garg
inequality have used ensembles (15, 16), have made assumptions
regarding process stationarity (17, 18), or have required weak
measurements (4) to draw conclusions, whereas the existing
studies of the three-box problem cannot incorporate measure-
ment nondetectability (19, 20), presenting a loophole that allows
classical noncontextual models to reproduce the quantum sta-
tistics (8). We have studied the three-box experiment on a matter

system, as originally conceived (12) and developed (6) in terms
of sequential, projective nondemolition measurements, and we
therefore reexamine the conclusions that can be drawn when
using this improved measurement capability.
Two assumptions underpin MR: (i) macroscopic state defi-

niteness and (ii) nondisturbing measurability. In previous studies,
it has been possible to assign violations of the Leggett–Garg in-
equality to a loss of nondisturbing measurability in both optical
(4) and spin-based (16) experiments. The disturbance due to
measurement can sometimes be surprisingly nonlocal (21), and it
has been suggested that detectable disturbance is a necessary
condition for violating a Leggett–Garg inequality in all cases (22,
23). We improve this result, clarifying that detectable disturbance
is a necessary condition for violating the Leggett–Garg inequality
in two-level quantum systems but is not required in the three-level
system studied here (SI Text).
We show from the statistics of the measurement outcomes that

Alice cannot detect Bob’s choice to measure or not (Fig. 4A);
thus, our measurements involve no detectable disturbance,
whereas the statistics from the three-box game violate a Leggett–
Garg inequality. We are therefore able to rule out the macro-
realist’s assumption i of state definiteness, a result unobtainable
from previous studies of two-level quantum systems.
Our experiment makes use of a three-level quantum system in

which Bob’s choice between M1 and M2 represents a choice of
measurement “context” in the language of Kochen and Specker
(9). If Bob is able to keep his measurement context secret,
a macrorealist Alice could only use a “noncontextual” classical
theory to describe the experiment. It is known that every pre-
and postselection paradox implies a Kochen–Specker proof of
quantum contextuality (8). It has been argued that measurement
disturbance provides a loophole to admit noncontextuality into
classical models [in addition to finite measurement precision (24,
25)]; all classical models presented to date that exploit this
loophole give rise to detectable measurement disturbances. In
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Fig. 3. Bob verifies the nondetectable nature of the Mj measurements. (A)
Measurement within the mS = −1 manifold only. (i) Bob’s measurement
results when observing the state jI〉 in the jj〉 basis are independent of the
j-value selected to within experimental error. Repeatability is illustrated by
plotting the result of a second Mj measurement within mS = −1, conditioned
on (ii) the result :M2, or (iii) the result M2. (B) Repeatability of each Mj

measurement is studied within the mS = −1 manifold; a finite probability
exists for the electron spin to branch into the mS = +1 manifold, yielding an
undetermined reading, and for the nuclear spin to flip producing a “defi-
nitely changes” outcome. Error bars show ±2 σ/95% confidence intervals.
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Fig. 4. Violation of a Leggett–Garg inequality in the three-box game. (A)
Alice’s measurement M3 is independent of Bob’s choice to perform mea-
surement M1, M2, or neither (N). (B) Observations of Bob and Alice are
correlated to indicate the probability that Bob has (or has not) seen state
Mj, given that Alice has seen M3, determining who “wins” the game. Alice’s
probability of winning exceeds 50% for both of Bob’s choices M1 andM2. (C)
Four MR-compatible histories that extremize 〈K〉 are illustrated by four
trajectories passing through different boxes during the game. A trajectory
entirely within the white j = 3 boxes has Q{1, 2, 3} = +1 and yields 〈K〉 = +3.
Histories that visit other boxes yield 〈K〉 = −1. (D) 〈K〉 values of the four paths
are shown in the corners of the (Q2, Q3) graph. Values for 〈Q2〉 and 〈Q3〉 from
MR-compatible experiments must lie inside the shaded square satisfying −1
≤ 〈K〉 ≤ 3. Our measurements lie on the cyan curve outside this region but
within the region allowed by QM.
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our experiment, Bob’s intervening measurement introduces no
disturbances detectable by Alice and cannot be accounted for by
existing classical models.
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