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We study decoherence of central spins by a spin bath, focusing on the difference between measurement of
a single central spin and measurement of a large number of central spins �as found in typical spin-resonance
experiments�. For a dilute spin bath, the single spin demonstrates Gaussian free-induction decay, in contrast to
exponential decay characteristic of spin ensembles. A strong difference between a single spin and a spin
ensemble also exists for the Rabi oscillation decay: for a repeated Rabi oscillation experiment, suppression of
decoherence happens for a single spin while acceleration takes place for a spin ensemble. The mathematical
origin of such behavior is similar to quantum Zeno/anti-Zeno effects.
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I. INTRODUCTION

The ability to accurately manipulate and control single
electron and/or nuclear spins holds much potential for appli-
cations in coherent spintronics,1 quantum information
processing,2–4 and high-precision metrology.5,6 Also, the
studies of single spins allow detailed exploration of funda-
mental questions related to complex quantum dynamics in
spin systems. During the last few years, rapid progress in this
direction leads to implementation of measurement and con-
trol of various single-spin systems, such as single electron
spins localized in quantum dots,7–10 spins of impurity centers
in diamond,11–14 or electron spins in SiO2 �Refs. 15 and 16�.

An important aspect of the single-spin studies is the in-
vestigation of decoherence caused by interaction between the
spin in question �below referred to as a central spin� and its
environment. For instance, an electron spin located in a
GaAs quantum dot interacts with a bath of Ga and As nuclear
spins. Due to entanglement established between the central
spin and the bath, the reduced density matrix of the central
spin represents an incoherent mixture of different spin states,
instead of coherent superposition. As a result, many desirable
quantum properties of the central spin are lost �e.g., it be-
comes unsuitable for quantum computation or for use in co-
herent spintronic devices�.

Decoherence of a central spin by a spin bath is an impor-
tant process in many physically interesting systems and situ-
ations. In particular, the free-induction decay �FID� of mag-
netization in standard magnetic-resonance experiments
�NMR or ESR� is governed by decoherence of a central spin
by a bath of spins, which are coupled by dipole-dipole inter-
actions with the central spin. In standard NMR/ESR experi-
ments, however, the observed signal comes from an en-
semble with large number of spins, which are coupled to
identical or structurally similar environments.17–20 As an ex-
ample, in this paper we consider a crystal containing para-
magnetic impurity spins of one species, denoted below as
species S, which are decohered by another dilute spin species
I, with dipole-dipole coupling between S and I spins. One
can think, for instance, of a frequently encountered
situation17,21 where S spins are paramagnetic centers in non-

magnetic crystal and I spins belong to another rare species:
e.g., S could be the electron spin of a nitrogen-vacancy cen-
ter in diamond, and I spins could be a bath of 13C nuclear
spins,11,14 or the bath of the electron spins of nitrogen atoms
�P1 centers�.22,23 We assume that the S spins are extremely
rare �as it is the case for impurities in reasonably clean
samples�, so that the coupling between different S spins can
be neglected and every spin S can be considered separately
�see Fig. 1�. In this case, every spin S is decohered by its
own bath, which consists of the I spins located sufficiently
close to the given S spin �having noticeable dipolar coupling
to the central spin�, and the FID signal of S spins measures
the dynamics of decoherence.

In this work, we compare the decoherence dynamics as
measured on a single S spin with the dynamics inferred from
the FID measurement of ensembles of S spins. The former
shows Gaussian decay �Gaussian FID line shape� while the
latter demonstrates exponential decay �Lorenzian FID line
shape�. The difference is due to large fluctuations in the cou-

FIG. 1. Schematic representation of a crystal containing an en-
semble of S spins, every such spin being decohered by a bath made
of dilute I spins. Each window �marked by dashed line� shows a
part of the crystalline sample containing an S spin �white circle with
white arrow inside� and a number of I spins located sufficiently
close to a given S spin to form its own spin bath. Arrangement of I
spins is different for each S spins, although all arrangements are
structurally similar.
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pling to the environment of different S spins. We show that
this difference is even more pronounced in case of Rabi os-
cillations, when the S spins are driven by strong rf field with
frequency tuned in resonance with the Larmor frequency of S
spins. In this case, by repeating a Rabi oscillation experiment
�exact protocol is described below�, one can achieve suppres-
sion of decoherence for a single spin while having accelera-
tion for spin ensemble.

We show below that the difference between the single S
spin and S-spin ensemble comes from the fluctuations in the
environments made up of dilute I spins due to the local ar-
rangements �positions on the crystal lattice� of I spins being
different for different S spins �see Fig. 1�. In the mean-field
terms, we can say that the dipolar fields created by the spin
bath on a given S spin have different distributions for each S
spin. It appears that these differences are very large �the sec-
ond moment of the dipolar fields is diverging�, despite struc-
tural similarity of environments of every S spin, and are
caused by strong dependence of dipole-dipole coupling on
distance between two interacting spins. In contrast, such
fluctuations are absent in systems with dense spin baths, e.g.,
in other ESR/NMR systems where the spin species I are not
dilute or in an ensemble of GaAs quantum dots. In these
cases, local environments of every S spin are exactly identi-
cal �not just similar�, and for these systems, the single spin
will exhibit the same decoherence pattern as an ensemble of
spins.

Beside fundamental interest in comparing the decoher-
ence dynamics of the single spin and the spin ensemble, our
work may be useful for better understanding of the problems
to emerge in scaling up the spintronics or quantum compu-
tation devices. Even if the device is uniform on a macro-
scopic scale, all elements of a large device may not be ex-
actly the same on microscopic level, and the strength of
coupling to the environment may be different for every spin-
based element. Our results illustrate that, in a number of
realistic situations, the fluctuations within an ensemble of
similar spin-based elements may be very large, and a number
of “nontypical” elements with very strong coupling to the
environment may be present. While the number of such ele-
ments is small, they may qualitatively change the situation.
In practice, such elements should be taken into account and
controlled, and the environment of every qubit in the pro-
spective quantum computers should be controlled at a micro-
scopic level. Conversely, the predictions based on behavior
of a large array of elements should be taken carefully: they
may be too pessimistic �or too optimistic� when applied to a
single “typical” element.

II. FREE-INDUCTION DECAY

A single S spin coupled via dipolar interactions with a
bath of I spins is described by the Hamiltonian �everywhere
below we take �=1�;

H = �0Sz + �
k

�kIk
z + �

k

ak�SIk − 3�Snk��Iknk�� + HB, �1�

where �0 is the Larmor frequency of the S spin, �k is the
Larmor frequency of the Ik spin �k=1, . . .N�, rk is the vector

connecting the site of S spin and the site of Ik spin, rk= �rk�,
nk=rk /rk, and ak=�S�I /rk

3, where �S and �I are the gyromag-
netic ratios of S and I spins, respectively. The term HB de-
scribes the dipolar interactions inside the bath. In the stan-
dard situation of large quantizing field along the z axis, the
Hamiltonian H can be transformed to the rotating frame to
give �after omitting the nonsecular terms�,

H̃ = �
k

AkS
zIk

z + H̃B, �2�

with Ak=�S�I�1−3nk
z� / �2rk

3�, where we took into account
that the difference between �0 and all �k is large.17

In many experimentally interesting situations, the intra-
bath coupling can be neglected �at least, for a certain interval
of times�. The spins Ik can have �I��S �e.g., when Ik are the
nuclear spins and S is the electron spin�, in which case the
intrabath dipolar coupling is small in comparison with the
system-bath coupling �the latter quantified by the parameter
b= �1 /2���kAk

2�. Also, the spread in �k can be much larger
than the intrabath coupling, thus making Ik

z the approximate

constants of motion,17,18 in which case H̃B also can be omit-
ted. In the language of magnetic resonance, we limit our-
selves to the case of T2

��T2, where T2
� is the decay time of

free-induction decay �inhomogeneous dephasing time� and
T2 is the decay time of the Hahn echo signal �homogeneous
dephasing time�. With the intrabath dynamics excluded, the
Hamiltonian governing the FID signal has a particularly
simple form;

H0 = �
k

AkS
zIk

z . �3�

For simplicity, everywhere below we assume S=1 /2 and Ik
=1 /2; the calculations can be performed for any value of
spins S and I but the answers are more cumbersome.

Initially, the S spin is uncorrelated with the bath and is
polarized along the x axis so that its density matrix is �S�0�
= �1 /2�12+�Sx, where 12 is the 2�2 identity matrix and � is
the degree of polarization �for such initial condition
TrSSy�S�0�=TrSSz�S�0�=0, while TrSSx�S�0�=� /2, where
TrS denotes trace over the spin S�. The initial state of the bath
at experimentally relevant temperatures is described by the
density matrix �B�0�=2−N1B, where 1B denotes the identity
matrix of dimensionality 2N. The FID signal measured in
magnetic resonance is proportional to the time-dependent
magnetization along the x axis. The latter is given by a stan-
dard quantum-mechanical average24 and has a form,17,18

Mx�t� = Tr Sx��t�/Tr Sx��0�

= 2−N+1 Tr Sxe−iH0tSxeiH0t

= �
k

cos
Akt

2
, �4�

where we normalized Mx�t� to have Mx�0�=1. The FID line
shape is given by the cosine transform of Mx�t�.

Applying the central limit theorem to this situation,25–28

one can find that the FID of a single S spin is approximately
Gaussian, with the width given by b=��kAk

2—where the
coupling parameters Ak are determined by the positions of
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the spins I on a crystal lattice with respect to the given S
spin. More generally, the moments of the FID line shape can
be calculated directly from Eqs. �3� and �4�, as demonstrated
in the Appendix, giving,

m2 = b2 = �
k

Ak
2, m4 = 3m2

2 − 2�
k

Ak
4, �5�

so that m4�3m2
2 always holds; for Gaussian line shape m4

	3m2
2.

In order to calculate the FID �or FID line shape� for an
ensemble of S spins, one needs to average Mx�t� over the sets
of Ak, with every S spin having its own set of Ak. Such a
calculation is given in Ref. 18. For the systems considered
here, where the I spins are dilute and the FID signal decays
exponentially with time, the answer is

Mx�t� = exp�− 	t�, 	 	 3.8�I�Sn , �6�

where n is the volume density of I spins. Correspondingly,
the line shape is the Lorenzian with the width 	, and the
fourth moment of the FID line m4 is much larger than its
second moment m2 squared.29 This result remains valid �al-
though with somewhat different numerical factors, depend-
ing on the type of underlying crystalline lattice� also for
more complex situations, when the intrabath dynamics is
taken into account.18

Thus, any individual S spin demonstrates approximately
the Gaussian FID line with m4�3m2

2, while the ensemble of
S spins demonstrates the Lorenzian FID line with m4
m2

2.
There is no contradiction here: the ensemble FID line repre-
sents an average over many central spins, each one having its
own arrangement of the bath spins on a crystal lattice, and,
correspondingly, its own value of b. The FID line shape of
each single S spin is Gaussian but the widths b vary signifi-
cantly from one central spin to another and the average over
many Gaussians with different widths gives a Lorenzian line
shape. Using the same approach as in Ref. 18, the distribu-
tion of the Gaussian linewidths in the ensemble of central
spins can be found as

P�b� =
	

b2� 2

�
exp�− 	2/�2b2�� , �7�

having the maximum at b=	 /�2 and a very heavy power-
law tail,29 1 /b2, in the region of large b. This heavy tail
indicates that the local distribution of I spins varies very
strongly from one S spin to another. Such variations have
been observed, e.g., in experiments on NV centers in
diamond.13,22 Although the number of spins with large b de-
creases with b, but “one bad apple spoils the barrel:” the
effect of such rare S spins with abnormally large value of b
�much larger than 	� qualitatively changes the behavior of
FID.

In practice, it means a “typical” value of b for a single
central spin is very weakly determined by the value of 	.
Therefore, it is impossible to reliably predict the FID time
for any single central spin, and, conversely, by knowing the
FID time for any single spin S, it is impossible to predict the

FID time for an ensemble of spins. These problems are
caused by the fundamental long-range character of the dipo-
lar interactions.

III. RABI OSCILLATIONS

The difference between the single S spin and the en-
semble of central spins becomes even more spectacular �and
experimentally accessible� if we consider Rabi oscillations.
The effect of the rf driving field of magnitude HR and fre-
quency �0 �i.e., exactly in resonance with S spins� is de-
scribed by adding the driving term �SHRSx cos �0t to the
Hamiltonian �1�. In the rotating frame, the secular part of the
Hamiltonian becomes

H0 = hxS
x + �

k

AkS
zIk

z , �8�

i.e., in comparison to Eq. �3�, the driving term hxS
x is added,

with hx= �1 /2��SHR. As above, we assume that the initial
state of the bath is �B�0�=2−N1B, while the central spin now
is assumed to be initially polarized along the z axis. The
Hamiltonian �8� is exactly solvable, see Refs. 25 and 26.
Using the result of the Appendix, we can replace the action
of the bath �in the last term of Eq. �8�� by the random static
field B,

H1 = hxS
x + BSz, �9�

which has the Gaussian distribution of width b in case of a
single S spin, and the Lorenzian distribution of width 	 in
case of ensemble of S spins. This Hamiltonian is analytically
solvable25,26 but the exact solution is cumbersome. In prac-
tice we are interested in the case of strong driving, when
hx
b for single S spin, or hx
	 for an ensemble of S spins.
In this approximation, the evolution operator has a simple
form

U1 = exp�− iSx�t�, � = hx + B2/�2hx� . �10�

Then the values Mz�t� and My�t� are equal to the averages
over B of the expressions cos �t and −sin �t correspond-
ingly.

In case of a single spin, where B has a Gaussian distribu-
tion, Mz�t� and My�t� have a form of phase shifted slowly
decaying oscillations �see also Refs. 25 and 26�:

Mz�t� = MG
env�t�cos�hxt + 
� ,

My�t� = − MG
env�t�sin�hxt + 
� ,

MG
env�t� =

1

2
1 +
b4t2

hx
2 �−1/4

�11�

where the phase shift is 
= �1 /2�arctan�b2t /hx�, and MG
env�t�

is the oscillations envelope �subscript “G” denotes Gaussian
distribution of B�. It is important to note that the initial decay
of the oscillations envelope, at times 2� /hx� t�hx /b2, is
quadratic,

MG
env�t� = 1 − A1t2 + O�t3� , �12�

where A1�b4.
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In case of an ensemble of S spins, we should start again
from Eq. �10� and calculate Mz�t� and My�t� for the Loren-
zian distribution of B. The averaging over B can be per-
formed using the Fourier transform of the Lorenzian to give
Mz�t�=Re F�t� and My�t�=−Im F�t�, where

F�t� = exp
ihxt − i
	2t

2hx
�erfc�	� t

2hx

1 − i
�2


 , �13�

and erfc�z�=1− �2 /����0
z exp�−t2�dt. In contrast to the

single-spin case, the initial decay of the oscillations enve-
lope, at times 2� /hx� t�hx /	2, has a square-root form, i.e.,

ML
env�t� = 1 − A2

�t + O�t� . �14�

Note that this result cannot be obtained by averaging Eq.
�12� over the distribution Eq. �7�, since A1�b4 diverges in
this limit. This divergence demonstrates that the short-time
asymptotic expansion �12� is not valid for an ensemble of S
spins.

Quadratic decay has an interesting implication in quantum
mechanics; it leads to the quantum Zeno effect30 �for recent
developments see, e.g., Refs. 31 and 32�: when a quantum
system, evolving under some unitary dynamics, is subjected
to quickly repeated projective measurements, the system’s
evolution becomes frozen. Since the decay of Rabi oscilla-
tions in our case is also quadratic in time, a similar suppres-
sion of decoherence dynamics can be observed in Rabi os-
cillations of a single central spin. Note, however, that this
similarity should be taken carefully: the suppression of the
Rabi oscillations decay in our case is not associated with any
projective quantum measurement, and takes place in an open
system subjected to decoherence.

The specific protocol for the repeated Rabi experiment is
as follows: Let us assume that the Rabi driving field is ap-
plied for some short interval of time 2� /hx���hx /b2,
which is adjusted to be proportional to the oscillations pe-
riod, so that by the time � the central spin performed an
integer number of revolutions around the x axis. Then, we let
the system and the bath equilibrate by waiting for the time of
order of T2: during this time, the value of Mz is conserved
�we assume that the energy relaxation time T1, in NMR lit-
erature often called “longitudinal relaxation time,” is very
long and can be taken as infinite�. Then, we apply the driving
field again for the interval �, wait, etc., until a large number
K of the Rabi field pulses is applied. At the end of the ex-
periment, we measure Mz �if projective measurement is used,
then the whole experiment with K Rabi pulses should be
repeated to build up statistics�. After a large number K of
Rabi pulses, the value of Mz can be found by iterating for-
mula �12�;

Mz�t� = �1 − A1�2�K 	 exp�− A1K�2� , �15�

where t=K��+T2�. In the limit of K�=T=const and K→�,
the central spin demonstrates the behavior similar to Zeno
effect: it becomes frozen in the state “up.”

For an ensemble of central spins, for the same experi-
ment, the situation is opposite. By iterating Eq. �14� we get,

Mz�t� = �1 − A2
���K 	 exp�− A2K��� . �16�

In the same limit of K�=T=const and K→�, the ensemble
of central spins demonstrates an acceleration of decoherence
similar to anti-Zeno behavior: the smaller � is, the faster
Mz�t� decays.

Obviously, our conclusion is not limited to the case of S
=1 /2 and I=1 /2. Considering the derivation above, one can
see that our results hold for larger spins and for more com-
plex situations. The only essential limitations are the follow-
ing: First, the whole time of the experiment should be much
smaller than T1. This implies that T2�T1. This is the case for
a wide variety of experimental systems. Second, the time �
should be much shorter than T2; since the only limitation on
this quantity is that �
1 /hx, this condition can also be sat-
isfied in many experimental systems using sufficiently strong
driving fields. Third, the FID time T2

� should be much smaller
than T2; again this is the case for many experimental sys-
tems.

The study above provides a good demonstration of one of
possible problems encountered in scaling up quantum sys-
tems: the fact that the bath spins are distributed uniformly on
macroscopic scale does not guarantee their uniform distribu-
tion on microscopic scale. As Eq. �7� shows, in an ensemble
of spins, even with structurally similar environments, there
will be a sufficient number of S spins with very large b, i.e.,
there will be qubits with extremely strong coupling to envi-
ronment, orders of magnitude stronger than the coupling of a
“typical qubit.” To avoid such fluctuations, the environment
of every qubit should be controlled at the microscopic level,
or qubits with extreme coupling to the environment should
be identified and not used for information processing.

The results above may also be of interest for better under-
standing of the problems emerging in controlling one central
spin in comparison to the ensemble of central spins. While
Rabi oscillations do not constitute a full-fledged quantum
control, an interesting question arises, whether similar differ-
ences are present in the situation when the trains of pulses
are applied to the single central spin and to the ensemble of
spins. To study this case in realistic settings, dynamics of the
bath �i.e., coupling between the bath spins� should be explic-
itly taken into account; this question may be answered in the
future studies.
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APPENDIX

To calculate Mx�t� directly from Eqs. �3� and �4�, the trace
over all the states of the system in Eq. �4� is separated into
the trace over the states of the S spin TrS and the trace over
the states of the bath TrB. To calculate the latter, we note that
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all Ik
z operators commute with the Hamiltonian H0, and

evaluation of TrB can be conveniently performed in the basis
of eigenstates of the operators Ik

z. Thus, we take the basis
wave functions of the bath as product states of individual
bath spins, �p�= �p1 , p2 , . . . , pN�, where �pk� is the eigenstate
of Ik

z with the eigenvalue pk �i.e., �pk� is �↑ �k for pk= +1 /2,

and �pk� is �↓ �k for pk=−1 /2�. Introducing the operator B̂

=�kAkIk
z and noticing that every �p� is an eigenstate of B̂, we

obtain:

TrBSxe−iH0tSxeiH0t = �
p

�p�Sx exp�− iSzB̂t�Sx exp�iSzB̂t��p�

= �
p

Sx exp�− iSzBpt�Sx exp�iSzBpt� ,

�A1�

where �p is the sum over all 2N bath states �p�, and the

quantity Bp=�kAkpk is the eigenvalue of B̂ corresponding to
the eigenstate �p�.

The last equation can be reinterpreted as follows: we can
imagine that the spin S is subjected to a random static clas-
sical field B=�kAkpk, where pk are the random numbers tak-
ing the values �1 /2 with equal probability. Then, the trace
over the bath states is equivalent to averaging over the ran-
dom field B. Note that this is not an approximation, but a
rigorous mathematical result. However, it should not be
taken literally: the field B is a fictitious mathematical con-
struct, which is convenient and which considerably simpli-
fies the calculation in more complex cases �e.g., when driv-
ing Rabi field is applied to the spin S�. Decoherence is purely
quantum phenomenon: it takes place due to quantum en-

tanglement of the system and the bath.33 Mapping of the
original quantum spin bath, with dynamically evolving
system-bath correlations, onto a classical random field B is
possible only for a limited class of problems �with so-called
“nonbranching” evolution�. In general, the initial state of the
bath described by the density matrix �B�0�=2−N1B does not
necessarily represent an equiprobable statistical mixture of
all basis states �p�: for instance, such a matrix can correspond
to the situation when the bath spins are entangled with some
other environment �e.g., phonons�. Interpretation of the bath
density matrix is not a subject of this work, and many ques-
tions in this area are still unsolved. To avoid discussions, in
this paper we consider the field B as a purely mathematical
construct, without ascribing any physical meaning to it.

The statistical properties of the fictitious field B determine
the FID line shape, e.g., it is easy to see that the moments of
the FID line shape are given by the moments of the distribu-
tion of B. In particular �see the main text�, if we consider a
single S spin, the distribution function of the field B in the
limit of large number of bath spins is determined by the
central limit theorem to be Gaussian;

P�B� =
1

�2�b2
exp�− B2/�2b2�� , �A2�

with b= �1 /2���kAk
2. If we consider an ensemble of S spins,

the field B should be averaged over all possible values of b
corresponding to all possible values of S spins, see Eq. �7�,
which gives the Lorenzian distribution,

P�B� =
	

�

1

B2 + 	2 . �A3�
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