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We study the Rabi oscillations decay of a spin decohered by a spin bath whose internal dynamics is

caused by dipolar coupling between the bath spins. The form and rate of decay as a function of the

intrabath coupling is obtained analytically, and confirmed numerically. The complex form of decay

smoothly varies from power law to exponential, and the rate changes nonmonotonically with the intrabath

coupling, decreasing for both slow and fast baths. The form and rate of Rabi oscillations decay can be used

to experimentally determine the intrabath coupling strength for a broad class of solid-state systems.
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Measurement of the Rabi oscillations decay is an im-
portant step in studying decoherence of quantum systems.
E.g., studies of Rabi oscillations in superconducting qubits
damped by bosonic baths and by 1=f noise [1,2] helped to
extend the decoherence time to �s range [3], placing
superconducting qubits among most promising solid-state
candidates. Recently, much progress has been achieved in
experimental implementation of long-living coherent Rabi
oscillations in various spin systems: magnetic molecules
[4], NV impurity centers in diamond [5–7], rare-earth ions
in host crystals [8], quantum dots [9–11]. Many of these
systems are attractive for basic studies of quantum spin
coherence effects, and show much promise for quantum
information processing, coherent spintronics, or high-
precision magnetometry, provided that detailed under-
standing of the decoherence processes will be achieved.

A major decoherence source in these spin systems is the
coupling of the central spin (e.g., the electron spin of the
NV center) to other spins in the sample (environmental
bath spins, e.g., the spins of nitrogen atoms in diamond).
Moreover, for many relevant spin systems, the direct cou-
pling between the environmental spins is essential, produc-
ing internal dynamics of the bath. Here we explore
theoretically the influence of such a dynamical spin bath
on the Rabi oscillations of the central spin. Avoiding the
commonly used framework of generalized Bloch equations
[12–15], we are able to investigate the form and rate of
decay as a function of the intrabath coupling strength. We
find interesting behavior of the Rabi oscillations, which
contradicts the expectations based on standard Redfield-
type analysis: e.g., the slow bath leads to pronounced
decay, while for the fast bath the decay rate vanishes but
the Rabi frequency becomes renormalized. We demon-
strate how the form and rate of the Rabi oscillations decay
can be used to experimentally characterize the intrabath
dynamics, and provide a rather simple recipe for analysis
of data.

We focus on dilute dipolar-coupled bath: in a nonmag-
netic crystal, a single central spin of species S (e.g., a
paramagnetic impurity) is coupled to a bath of dilute spins
of species I (e.g., other kind of paramagnetic impurities, or
nuclear spins). The coupling between the bath spins is non-
negligible, and is caused by dipolar interactions. This
situation encompasses a wide range of interesting solid-
state spin systems, from Er ions in CaWO4 studied in
1960s [16] to the NV centers in diamond [5–7] which
gained much attention recently. The NV centers may be
particularly suitable for detailed studies of Rabi oscilla-
tions and verification of the model due to possibility of
optical readout of a single central spin [17], and tunable
spin bath made of surrounding nitrogen atoms [7].
We assume that a very large magnetic field Bz is applied

along the z axis (as in standard NMR/ESR settings), lead-
ing to Zeeman splittings !S ¼ �SBz for the central spin S
and !I ¼ �IBz for the bath spins Ik (�S and �I are the
gyromagnetic ratios of the S and I spins, respectively).
Also, strong Rabi driving field HR is applied at the fre-
quency !S. The difference j!S �!Ij is much larger than
any other energy scale, so the mutual flips of the central
spin and the bath spins involve huge Zeeman energy mis-
match and are strongly suppressed. Hence, the terms like
SþI�k become irrelevant on a time scale of Rabi oscilla-

tions decay (see below); omitting these terms and trans-
forming into rotating frame we obtain a secular
Hamiltonian [12,13]:

H ¼ hxSx þ
X
k

AkSzI
z
k þ

X
k;l

Cklð3IzkIzl � IkIlÞ; (1)

where Sx;y;z and Ix;y;zk are the spin operators in the rotating

frame, and hx ¼ HR=2 is the rotating-frame Rabi driving
field. The coupling constants Ak ¼ �S�I½1� 3ðnzkÞ2�=r3k
are determined by the positions rk of the bath spins Ik (k ¼
1; . . .N), where rk ¼ jrkj and nk ¼ rk=rk (the origin of the
coordinate frame coincides with the central spin). Simi-
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larly, the intrabath couplingsCkl ¼ �2
I ½1� 3ðnzklÞ2�=r3kl are

determined by the vectors rkl ¼ rk � rl. Note that the
same Hamiltonian (1) can be obtained without external
field Bz if the transition frequencies !S and !I are deter-
mined by the zero-field splitting (e.g., due to anisotropic
interactions). Similarly, the assumption (used below) that S
and Ik are spins 1=2 is not essential: for larger spins, we can
consider each pair of levels as a pseudospin 1=2 [12,13].

Initially the central spin is in the state ‘‘up,’’ and the bath
is in a maximally mixed state (unpolarized bath at high
temperatures); i.e., the initial density matrix of the whole
system is �ð0Þ ¼ 2�Nj"ih"j � 1B, where 1B is the 2N � 2N

identity matrix. This is appropriate for most experiments
(for nuclear spins at temperatures above a few nK, for
electron spins—above tens of K). We calculate the time-
dependent z component of the central spin hSzðtÞi ¼
Tr�ðtÞSz, where �ðtÞ ¼ expð�iHtÞ�ð0Þ expðiHtÞ. In order
to see well-pronounced long-living Rabi oscillations, the
driving field should be large, so we assume that hx is much
larger than all other energy scales [18]. We calculate the
oscillations damping in the lowest order in 1=hx, treating
the second (spin-bath coupling) and the third (bath internal
Hamiltonian) terms in Eq. (1) perturbatively, and excluding
the bath internal Hamiltonian HB ¼ P

k;lBklð3IzkIzl � IkIlÞ
by the interaction representation transformation. The re-
sulting second-order Hamiltonian

H0 ¼ hxSx þ SxB̂
2ðtÞ=ð2hxÞ; (2)

where B̂ðtÞ ¼ expðiHBtÞB̂ expð�iHBtÞ, and the operator

B̂ ¼ P
kAkI

z
k.

The evolution of B̂ðtÞ is complex, involving intricate
correlations between bath spins. However, exact dynamics
of every single bath spin is not important, since hSzðtÞi
involves tracing over all bath spins. This is typical for
many spin-bath decoherence problems, from magnetic
resonance to quantum information processing, and many
approaches have been developed from the early days of
NMR/ESR theory [19,20] till very recently [21–28].
Below, following the works [19,20], we approximate the
effect of the bath by a random field BðtÞ, which is modeled
as an Ornstein-Uhlenbek process with the correlation func-
tion hBðtÞBð0Þi ¼ b2 expð�RtÞ, where the dispersion b ¼ffiffiffiffiffiffiffiffiffiffiffiffiP

kA
2
k

q
, while the correlation decay rate R is determined

by HB. This model may be oversimplified for complicated
situations, e.g., the description of advanced control proto-
cols requires more sophisticated treatment [23,24,28].
However, our direct numerical simulations evidence that
this model is quantitatively adequate for description of the
Rabi oscillations decay, while providing a clear description
of the physics underlying the Rabi oscillations decay, and
allowing access to the regimes outside of the Bloch equa-
tions framework.

The Hamiltonian (2) reflects a simple physical picture.
The zero-order eigenstates of the Hamiltonian (1) corre-

spond to the central spin states jþi ¼ 1=
ffiffiffi
2

p ½j"i þ j#i� and

j�i ¼ 1=
ffiffiffi
2

p ½j"i � j#i�, separated by a large Rabi fre-
quency hx. Since hx � b and hx � R, the field BðtÞ has
no spectral components of noticeable magnitude at the
Rabi frequency, and does not lead to transition between
the states jþi and j�i. The only relevant process is the pure
dephasing, when the field B destroys the initial phase
relation between the states jþi and j�i, leading to decay
of hSzðtÞi, so that

hSzðtÞi ¼ 1=2hcos�i ¼ 1=2Rehexpði�Þi; (3)

where h�i denotes average over all possible realizations of
BðtÞ, and the phase

� ¼ hxtþ 1

2hx

Z t

0
B2ðsÞds ¼ hxtþ� (4)

is the total phase difference between the states jþi and j�i
accumulated during time t, cf. the Hamiltonian (2). The
key quantity MðtÞ ¼ hexpði�Þi is an analytically comput-
able Gaussian path integral over the Ornstein-Uhlenbeck
process, which gives the answer

hSzðtÞi ¼ 1=2Re½MðtÞ expðihxtÞ�
½MðtÞ��2 ¼ expð�RtÞ½coshPtþ ðR=PÞ sinhPt�

� i
b2

hxP
expð�RtÞ sinhPt;

(5)

where P ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2ib2R=hx

p
.

Analysis of Rabi oscillations is often based on Bloch-
type equations [12] or its generalizations [14], derived for
various systems from quantum optics [15] to solid state
[14]. It is based on the Redfield-type approach [12,13],
taking into account only the terms which are secular with
respect to the Rabi driving hxSx. In addition to dephasing,
these terms describe the actual transitions between the
states jþi and j�i, which lead to a longitudinal relaxation
(along the x axis) of the central spin with the rate �l �
b2R=h2x. This rate is of second order in 1=hx, and is
determined by the spectral density of BðtÞ at the Rabi
frequency hx. Also, the generalized Bloch equations, hav-
ing constant coefficients, always predict the decay to have
a (multi)exponential form. In contrast, our results are not
limited to the terms secular with respect to Rabi driving,
and give the decay rate of the first order in 1=hx. The
solution (5) predicts the decay which has, in general, no
simple form (multiexponential, Gaussian, power law, etc.)
The familiar exponential decay occurs only at special
values of b, hx, and R, see below.
The effect of the bath internal dynamics may be impor-

tant even for slow baths, with R � b2=hx. In this limit,

P ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2iR=hx

p
, see Eq. (5). At short times t � 1=jPj,

the bath behaves as static, and the Rabi oscillations en-
velope exhibits nonexponential slow decay of the form

½1þ ðb2t=hxÞ2��1=4, in accordance with the exact results
obtained earlier [9,25–27]. At long times t � 1=jPj, the
decay has exponential form expð�bt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=4hx

p Þ, with the
rate which decreases very slowly with decreasing R. As a
result, even for very slow bath the effect of the bath
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dynamics remains noticeable. In experiments, the above-
described behavior of the Rabi oscillations decay can be
detected by varying hx (since the ratio of R to b2=hx
determines how fast or slow the bath is), and makes it
possible to estimate b and R.

Another interesting feature of our results is that the
decay of Rabi oscillations changes nonmonotonically
with R: it is fastest for R� b2=hx, slowing down for
both slow and fast baths. This is confirmed by direct
numerical simulations, see Fig. 1 and discussion below.

The regime of fast bath, with R � b2=hx, is even more
interesting and unexpected. In this case

MðtÞ ¼ exp

�
i
b2t

2hx
� b4t

4h2xR

�
; (6)

and the Rabi oscillations exhibit exponential decay with
the rate �t ¼ b4=ð4h2xRÞ, which vanishes quickly for large
R. However, it does not mean that the effect of the fast bath
disappears. The bath still noticeably affects the central
spin, shifting its Rabi frequency by b2=2hx, and only the
decaying part of the bath effect vanishes [29]. This slowing
of the Rabi oscillations decay is confirmed by direct nu-
merical simulations (Fig. 2).

On the other hand, for fast baths, the transitions between
the states jþi and j�i become important. While the de-
phasing between these states just shifts the Rabi frequency,
the transitions lead to longitudinal relaxation along the
x axis with the rate �l � b2R=h2x. This implies [12] ex-
ponential decay of Rabi oscillations with the rate �l=2,
which is comparable with the decay rate �t caused by the
pure dephasing. Above, for simplicity, we omitted the
longitudinal relaxation (since it is of order 1=h2x), but we
can include it using the Redfield-type approach: the answer
(5) for SzðtÞ just has to be multiplied by expð��lt=2Þ. This
explains how the system enters the generalized Bloch
equation regime at R � b: the dephasing effect becomes
negligible and the longitudinal relaxation becomes domi-
nant. In experiment, this regime can be identified by com-
paring �l and �t: they would be of the same order,
changing as 1=h2x for all sufficiently large hx.
To ensure that the physical picture above is adequate for

real dipolar-coupled bath, we performed direct numerical
simulations of the Rabi oscillations decay. We place the
central spin and N bath spins randomly, with uniform den-
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FIG. 1 (color online). Exact simulations for N ¼ 15 bath
spins. (a) Correlation function CðtÞ ¼ ð1=b2ÞhBð0ÞBðtÞi (normal-
ized by b2) obtained from direct simulations (black), see also
[31]. Its fitting (magenta or gray) determines the bath parameters
b1, b2, and R for each value of the intrabath coupling scale EB

(here EB ¼ 1, b1 ¼ 0:62, b2 ¼ 0:58, R ¼ 0:095). (b) Rabi os-
cillations decay for hx ¼ 14:14, b ¼ 0:85, and EB ¼ 1; individ-
ual oscillations are not resolved. Numerics (black) agrees well
with analytics (magenta, only the envelope shown).
(c) Envelopes of simulated Rabi decay for EB ¼ 1 (blue or
dark gray), 0.1 (green or light gray), and 0 (static bath, red or
gray); corresponding individual oscillations near t ¼ 300 are
shown on panel (d) by the same colors. Analytical results practi-
cally coincide with simulations, and are not shown. The decay
rate changes nonmonotonically with EB: the decay is slower for
EB ¼ 1 (blue) and 0 (red) in comparison with EB ¼ 0:1 (green).
At t ¼ 300, on panel (d), the oscillation amplitude for EB ¼ 0:1
(green) is twice smaller than that for EB ¼ 0.
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FIG. 2 (color online). Numerical simulations for N ¼ 159 bath
spins. (a) Correlation function CðtÞ ¼ ð1=b2ÞhBð0ÞBðtÞi (normal-
ized by b2) obtained from P-representation sampling simulations
(black); its fitting (magenta or gray) determines the parameter R
for each value of the intrabath coupling scale EB (here EB ¼ 1
and R ¼ 0:097). In spite of noticeable statistical fluctuations
[e.g., Cð0Þ is slightly larger than 1 due to them], the parameter R
is determined precisely enough to be used in Eq. (5). (b) Rabi
oscillations decay for hx ¼ 15:0, b ¼ 1:39, and EB ¼ 0:1; indi-
vidual oscillations are not resolved. Numerics (black) agrees
well with analytics (magenta, only the envelope shown).
(c) Envelopes of simulated Rabi decay for EB ¼ 0:1 (blue or
dark gray), 1 (green or light gray), and 10 (red or gray); the
longitudinal decay for EB ¼ 10 is taken into account. Analytical
results practically coincide with simulations, and are not shown.
The decay rate decreases for faster baths: the decay is slowest for
EB ¼ 10 (red). Individual oscillations for EB ¼ 10 near t ¼ 20
are shown on panel (d) in red: their frequency is shifted by
b2=2hx ¼ 0:064 from the value hx ¼ 15:0 (oscillations with
frequency hx ¼ 15:0 are shown by dotted black line to demon-
strate the phase difference accumulated since t ¼ 0).
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sity n ¼ 1, inside a cube with the side ðN þ 1Þ1=3, central
spin being in the center of the cube. All interaction coef-
ficients are calculated according to Eq. (1), using the actual
coordinates of the spins. The value ESB ¼ �S�I, which
determines the strength of coupling between the central
spin and the bath, is set to 1, thus defining the energy and
time scales for all quantities below. The value EB ¼ �2

I ,
which governs the energy scale of intrabath couplings, is
varied, making the bath slower or faster. We simulate the
dynamics of the system using two numerical approaches.
For smallN (e.g.,N ¼ 15 in Fig. 1) we exactly solve of the
Schrödinger equation with the Hamiltonian (1) via
Chebyshev polynomial expansion [30]. The dipolar-
coupled systems with N > 15 are difficult to model this
way (due to exponentially increasing resources require-
ments), so we use the P-representation sampling [30] for
modeling larger baths (N ¼ 159 in Fig. 2). To compare
numerical solutions with the analytics, we calculate the

total coupling to a bath b ¼ ½PN
k¼1 A

2
k�1=2 directly from the

positions of the spins [see Eq. (1) and below]. The corre-
lation decay rate R requires a separate simulation: we
calculate hBð0ÞBðtÞi and find R by fitting it to a decaying
exponent, see also [31]. Varying the system parameters in a
wide range, we simulated baths with N ¼ 15, 59, and 159
spins, and found good agreement between numerics and
analytics; typical results are given in Figs. 1 and 2.

The resulting experimental recipe is rather simple. If the
decay has a power law form at shorter times, changing to
exponent later, with the decay constants changing as 1=hx
and the duration of the two regimes varying with hx, then
the bath is slow. If the Rabi oscillations decay is exponen-
tial, with the rate changing as 1=h2x and the frequency shift
varying as 1=hx, then the bath is fast. The fast bath can be
made slow by strong increase in hx.

Summarizing, we studied the decay of the Rabi oscil-
lations of the central spin interacting with a dipolar-
coupled dynamical spin bath. Approximating the effect
of the bath as a random field (Ornstein-Uhlenbeck pro-
cess), we find analytically the form of the decay. Validity of
the approximation is confirmed by direct numerical simu-
lations. The oscillations decay has interesting features,
such as nonmonotonic variation of the decay rate with
increasing the intrabath coupling, and slowing down of
the decay for fast baths. Studying the Rabi oscillations
decay may help in experimental characterization of the
dynamical spin bath, and is well within experimental
reach, e.g., for NV centers in diamond.
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