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Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond
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We perform a detailed theoretical-experimental study of the dynamical decoupling (DD) of the nitrogen-
vacancy (NV) center in diamond. We investigate the DD sequences applied to suppress the dephasing of the
electron spin of the NV center induced by the coupling to a spin bath composed of the substitutional nitrogen
atoms. The decoupling efficiency of various DD schemes is studied, including both periodic and aperiodic pulse
sequences. For ideal control pulses, we find that the DD protocols with the Carr-Purcell-Meiboom-Gill (CPMG)
timing of the pulses provides best performance. We show that, as the number of control pulses increases, the
decoupling fidelity scaling differs qualitatively from the predictions of the Magnus expansion, and explain the
origin of this difference. In particular, more advanced symmetrized or concatenated protocols do not improve
the DD performance. Next, we investigate the impact of the systematic instrumental pulse errors in different
periodic and aperiodic pulse sequences. The DD protocols with the single-axis control do not preserve all spin
components in the presence of the pulse errors, and the two-axis control is needed. We demonstrate that the
two-axis control sequence with the CPMG timing is very robust with respect to the pulse errors. The impact
of the pulse errors can be diminished further by symmetrizing this protocol. For all protocols studied here, we
present a detailed account of the pulse error parameters which make the strongest impact on the DD performance.
In conclusion, we give specific recommendations about choosing the decoupling protocol for the system under
investigation.
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I. INTRODUCTION

A singly negatively charged nitrogen-vacancy (NV) center
in diamond has recently emerged as a promising candidate
for solid-state quantum computation and quantum informa-
tion processing,1–10 and high-precision electric and magnetic
sensor for nanoscale applications.11–20 The quantum state of
the electron spin of a single NV center can be conveniently
initialized and read out optically,21–23 and coherently manip-
ulated electrically, optically, and magnetically, even at room
temperatures.24–31 By prolonging the coherence time of the NV
center spin, these favorable properties can be better exploited
for potential applications.

Dynamical decoupling (DD) is an efficient tool for de-
coherence suppression. In nuclear magnetic resonance, the
techniques based on Hahn spin echo, which employ the control
pulses to manipulate the spins and achieve high-resolution
spectra, have been widely used for several decades.32 Lately,
DD has been actively explored in the general context of QIP. By
applying a sequence of control pulses (π rotations) to the qubit,
in the limit of very short interpulse delay, DD can effectively
cancel the coupling between the system and its decohering
environment, thus preserving the qubit coherence.33,34 Various
DD schemes have been developed,33–41 and implemented on
different spin systems.36,37,42–48

DD has been recently implemented on single NV
centers.49–51 Excellent performance of several basic DD
sequences has been demonstrated, thus opening the way to
using DD in various experimental applications of NV centers.
Understanding the performance of different DD schemes on
NV centers in diamond is timely, and will be useful for future
developments in this area of research. In this paper, we present
a detailed study of various DD sequences designed to preserve
the quantum state of a single NV center spin decohered by a
spin bath of substitutional nitrogen defects (P1 centers), which

is the dominant decoherence source for the type Ib diamonds.
We identify the most useful DD protocols, and study their
efficiency in realistic experimental situations.

A large family of DD protocols is constructed based on
the pulse sequences with periodic structure. Representatives
are the Carr-Purcell-Meiboom-Gill (CPMG) sequence and
its generalizations,52,53 and periodic dynamical decoupling
(PDD).33,34,38,54 Among them, the sequences where all pulses
rotate the spin about the same axis (single-axis control)
refocus the spin dephasing, while the sequences where the spin
is rotated alternatively about two mutually orthogonal axes
(two-axis control) are able to suppress general decoherence.34

However, the interpulse delay can never be made arbitrarily
small to completely eliminate decoherence, because of un-
avoidable experimental constraints. These constraints limit the
efficiency of the basic DD schemes. To suppress the effect of
system-environment coupling more efficiently, more advanced
symmetrized versions of periodic dynamical decoupling,32,55

and the concatenated dynamical decoupling (CDD) have been
proposed.35,56

Another important family of DD protocols is based on
aperiodic DD schemes, such as Uhrig’s DD (UDD), where
the pulse spacings are optimized to suppress dephasing with a
given number of pulses.39 A DD scheme extending UDD to the
two-axis control, the quadratic DD (QDD) has been proposed
for suppression of general decoherence.41 The performance of
a given decoupling sequence strongly depends on the nature
of the decohering bath. It has been demonstrated that for a
bath with rapidly decaying spectral density, UDD performs
better than periodic protocols (like CPMG) with the same
number of pulses, while for a bath with a soft frequency
cutoff in the spectral density, CPMG-like pulse spacing is
preferred.36,49,50,57–61 In a more general situation, the pulse
positions can be numerically optimized for a given type of the
bath.36,37,62,63
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Here we consider the decohering bath made of the electron
spins of P1 centers, which are coupled to the NV center and to
each other via long-range dipolar coupling. The effect of such
a bath is accurately approximated by the mean-field model of
a random magnetic field acting on the NV center and leading
to the dephasing of the NV spin.25,49 We perform theoretical
and experimental study of DD in such a system, studying both
periodic and aperiodic DD sequences based on single- and two-
axis control, as well as their symmetrized and concatenated
versions. Using both analytical and numerical tools, we show
that the periodic sequences with equally spaced pulses (PDD)
and the sequences with CPMG timing exhibit different short
and long time behavior. The aperiodical sequences UDD
and QDD show inferior performance in comparison with
the CPMG-timed sequences, in accordance with the previous
studies mentioned above. We further demonstrate that, in
contrast with the expectations, the concatenated DD sequences
do not improve the performance of decoupling; we clarify the
origin of this behavior.

For ideal DD pulses, the decoupling efficiency grows in
the limit of very short inter-pulse delay (in nonpathological
cases). On the other hand, as the number of DD pulses
is increased to achieve shorter delay, the negative effect of
the unavoidable imperfections in the control pulses becomes
noticeable. At long times, the pulse error accumulation can
completely destroy the DD performance,52,64 and understand-
ing the impact of the pulse errors is important for successful
decoupling. Below, we focus on the instrumental pulse errors
caused by imperfect adjustment of the rotation axis/angle (the
errors caused by decoherence during the control pulse are
much less important in our experiments). Since the 1970s,
a vast number of recipes has been suggested to reduce the
effect of the instrumental pulse errors, from pulse tuning
and shaping minimizing the individual pulse errors,65–72 to
combining the imperfect pulses in order to compensate the
errors.55,73–75 In our work, minimization of the errors is not
addressed: We assume them fixed. We analyze how different
sequences accumulate or compensate these fixed instrumental
pulse errors: This is known to drastically depend on the specific
sequence.35,36,44,56,61,62,76–78 We show that the CPMG and the
UDD sequences accumulate pulse errors in the rotation angle
and the z component of the rotation axis, with the decoupling
fidelity being sensitive to the initial spin state. The sequences
based on the two-axis control are in general more robust to
the pulse errors; we provide a detailed account of the most
important components of the pulse errors. As a result, our
results provide a detailed understanding of the dynamical
decoupling of a single NV center spin in the bath of P1 centers
in diamond.

The rest of this paper is organized as follows: In Sec. II we
describe the system under study, an NV center in diamond.
Section III presents description of the experiments. In Sec. IV
we analyze the decoupling performance of the DD protocols
assuming ideal pulses. In Sec. V we focus on the accumulation
of pulse errors in various DD sequences for different states
of the NV center’s spin. In Sec. VI we discuss the internal
structure of the bath under study. Conclusions are given in
Sec. VII.

II. DESCRIPTION OF THE SYSTEM: AN NV CENTER
IN DIAMOND

The singly negatively charged NV center in diamond is
composed of a vacancy defect and an adjacent substitutional
nitrogen atom. The electronic ground state of the center has
a total spin S = 1 with a zero-field splitting D = 2.87 GHz
between the mS = 0 and mS = ±1 levels.79 The quantization
axis of this splitting is along the symmetry axis of the NV
center, which we take as the z axis. In our experiments, a
static magnetic field B0 = 114 G is applied along the z axis,
and the sublevels mS = +1 and mS = −1 are separated. The
transition energies between states mS = 0 and mS = +1 and
that between mS = 0 and mS = −1 differ by hundreds of MHz.
We apply pulses to the NV center only in resonance with the
transition between mS = 0 and mS = −1, which can thus be
regarded as an effective two-level system S0 = 1/2 (the central
spin). The NV center spin is coupled to the nuclear spin of the
host nitrogen atom I0 via hyperfine interaction A0S

z
0I

z
0 , where

A0 = −2π × 2.16 MHz for 14N, and A0 = 2π × 3.03 MHz
for 15N nuclei, respectively.80 The intrinsic relaxation time of
the nuclear spin is of orders of milliseconds, so that I0 for a
single experimental run is a constant of motion which merely
shifts the Larmor frequency of the NV center spin, but changes
from one run to another.

The NV center is surrounded by a large number of P1
centers (abundance ∼ 0.02 % in our sample), which form the
decohering bath. Each P1 center is composed of an unpaired
electron with spin Sk = 1/2 and a 14N nuclear spin Ik = 1,
coupled via hyperfine interaction of the order of 100 MHz.
The NV center spin S0 is dipolarly coupled to all Sk with the
coupling strength ∼ 1 MHz, and the dipolar coupling between
the electron spins of different P1 centers is also of order of
1 MHz. The dipolar interactions between different spins Sk ,
therefore, are responsible for the internal dynamics of the spin
bath, leading to the flip-flops between different bath spins.
At the same time, the flip-flops between the central spin S0

and the bath spins Sk are strongly suppressed, due to the
large mismatch in the transition energies (2.55 GHz for the
NV center spin vs a few hundreds of MHz for a P1 center).
Therefore, decoherence of the NV center spin is dominated by
pure dephasing [i.e., decay of the transversal (the x-y plane)
component of the NV spin]. The longitudinal z component,
which decays at much longer times (tens of milliseconds and
up, mostly due to spin-phonon relaxation), is assumed to be
conserved. In this situation, the bath of P1 centers can be
represented25,49 as a bath of spins 1/2 (which we denote as
S̃k), with the system-bath coupling Hamiltonian,

HSB = Sz
0

∑
k

akS̃
z
k . (1)

Each coupling constants ak depends on the specific state of
the nuclear spin of the kth P1 center, on the direction of the
symmetry axis of this P1 center, and on the location of this P1
center with respect to the NV center. For details, see Sec. VI
below, and the supporting material of Ref. 25.

The decoherence problem for a central spin coupled to a
many-spin bath is typically beyond the reach of analytical
treatment due to the complex intrabath dynamics. Many
methods have been developed in the field of magnetic
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resonance,81–84 and recently in the field of quantum infor-
mation processing.4,25,59,60,85–95

In this work, we treat the spin bath of P1 centers in a
mean-field manner, approximating it as a classical noise field
acting on the NV center spin. This treatment is justified because
the coupling between the bath spins is of long-range character,
and its magnitude is of the same order as the coupling of
a bath spin to the central spin. In this case, the back-action
from the central spin on the bath is negligible: The action of
a single NV center on a given P1 spin is small in comparison
with the action of hundreds of other bath spins. Next, due to
the long-range character of the dipolar coupling, the NV spin
experiences the action of a large number of P1 bath spins. As a
result, the action of the bath as a whole on the NV spin can be
approximated as a random magnetic field, which is Gaussian
(due to the large number of bath spins acting on the NV spin
with comparable strength), has zero mean, and whose variance
is96 b2 = (1/4)

∑
k a2

k . Due to small back-action, this random
field is stationary. Moreover, since each bath spin is coupled
to a large number of other bath spins, and the dynamics of
different bath spins are incoherent, we expect this random
magnetic field to be Markovian (i.e., history independent).

This treatment follows the lines of the early works in
the area of magnetic resonance.81–83 It has been numer-
ically and experimentally justified for the system under
consideration.25,49,85,88 We stress that the validity of such
approximation is built upon the assumption of small back-
action from the central spin and the lack of coherence between
the dynamics of different bath spins. If the couplings between
the bath spins are much smaller than the coupling between a
single bath spin and the central spin, then the bath dynamics is
conditioned on the state of the central spin, and the resulting
correlations in the bath play a major role.60,87,89–91,95

The noise field B(t), which is Gaussian, Markovian, and
stationary, is represented by an Ornstein-Uhlenbeck (O-U)
process97 with the correlation function,

C(t) = 〈B(0)B(t)〉 = b2 exp (−|t |/τc), (2)

where b describes the characteristic coupling strength of the
central spin to the bath, and τc is the correlation time of the
noise field (governed by the coupling between the bath spins).
Thus, the Hamiltonian governing the dynamics of the central
spin is

H = Sz
0B1(t) + Hc(t), (3)

where the term Hc(t) represents the control pulses (specified
below), and the field B1(t) includes the random bath field B(t),
the static applied field, and the hyperfine field A0I

z
0 from the

NV’s own nuclear spin. Here and below we adopt the unit
h̄ = γ = 1, where γ is the gyromagnetic ratio for the NV
center spin.

The performance of a DD sequence can be measured by
the overlap between the initial state and the state after the
pulse sequence, Tr[ρ(0)ρS(t)], where ρ(0) = |ψ(0)〉〈ψ(0)| is
the initial density matrix of the central spin, and ρS(t) is the
reduced density matrix of the central spin at time t ; we assume
that the central spin is disentangled from the bath at t = 0 and
is prepared in the pure state |ψ(0)〉. In our study, we focus
on two initial states of the central spin, with the spin directed
along the x and the y axes, which we will denote as |X〉 and

|Y 〉, respectively. Any density matrix for a spin-1/2 system
can be expressed as

ρS(t) = (1/2)[1 + SXσx + SY σy + SZσz], (4)

where 1 is the identity operator, σx,y,z are the Pauli operators,
and the parameters SX,Y,Z determine the corresponding spin
projections. Below, we use these parameters to characterize the
decoupling fidelity: They are directly related to the standard
fidelity measure,98 which in our setting acquires the form F =√〈ψ(0)|ρS(t)|ψ(0)〉. The fidelities SX and SY are normalized
to the range [−1,1], are directly determined experimentally,
and coincide with 2F 2 − 1 for the corresponding initial states.

Our analysis and numerical simulations have been per-
formed in a rotating frame with a frequency close to the center
of the ESR line of the NV center spin. In this rotating frame,
the average field 〈B1(t)〉 is Bdtn + A0I

z
0 , where Bdtn is the

small detuning of the pulse field from the exact resonance. Its
value Bdtn = −2π × 0.5 MHz has been obtained by fitting the
experimental results. In simulations, for different realizations
of B(t), we randomly sample the values of I z

0 = +1, −1, 0 with
the probabilities p+ = 0.5, p− = 0.2, p0 = 0.3, respectively.
These values are determined experimentally, from the Ramsey
fringe experiments.

III. EXPERIMENTAL SETUP

We study NV centers in a Ib bulk diamond sample (Element
Six) which is mounted in a scanning confocal microscope
at room temperature.29 The local density of electronic spins
surrounding the NV center used in these experiments is
∼100 ppm, which is estimated from the decay of Ramsey
fringes of nitrogen spins.99 A static magnetic field (B0 =
114 G) is applied along the NV symmetry axis by a custom-
made vector magnet (Alpha Magnetics).

The envelopes of the pulse sequences are generated using
an arbitrary wave-form generator (Tektronix AWG 5014B).
The AWG is connected to the I/Q modulation inputs of
a vector signal generator (R&S SMBV100A) which has a
250-MHz modulation bandwidth. In order to achieve high
Rabi frequencies we amplify the microwave signal using a
high-power amplifier (AR 25S1G4). The amplified signal is
delivered to the sample by a coplanar waveguide (CPW) which
is fabricated directly on the surface of the diamond.27,49 This
configuration allows us to generate sequences with short (8-ns)
π pulses with arbitrary but well-defined relative phases.

IV. DYNAMICAL DECOUPLING WITH IDEAL PULSES

Analysis of DD is often based on the Magnus expansion
(ME),32 which is a cumulant expansion of the evolution
operator of the system. However, the Magnus expansion is
not always sufficient for the analysis of DD under realistic
conditions. As an asymptotic expansion, the ME is valid
only for the sequences with very short period, satisfying
the condition Tc||HB || � 1, where Tc is the DD period,
and ||HB || is the norm of the bath Hamiltonian. In many
realistic situations, ||HB || is macroscopically large, and the
formal ME validity condition requires unreasonably small Tc;
nevertheless, DD performs very well far beyond the formal
ME limits. In this work, by virtue of the known properties of
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the O-U process, we perform analytical and numerical study
of different DD sequences without invoking ME.

Specifically, we study the following protocols: PDD XY
(in which the central spin is rotated about the x and y

axes alternately), its symmetrized version SDD XY and
concatenated CDD versions; CPMG, XY4 (a DD scheme with
the same timing as CPMG but based on the two-axis control),53

its symmetrized version XY8 and its concatenated version
CDDXY4. We also consider the aperiodic UDD sequence and
its extension QDD.41

In this section, we assume the pulses in the DD sequences
are ideal (i.e., without pulse errors), and focus on the
performance of DD sequences as a function of the interpulse
delay. Note that for ideal pulses, in the regime of pure
dephasing, the axes of the π pulses in the DD sequence are
irrelevant, as explained below. Thus, our results are equally
applicable to the case of the single-axis control sequences
(single-axis PDD, SDD, CDD, etc.) However, as we will see
in the subsequent sections, the single-axis protocols perform
poorly in the case of nonideal pulses, so these protocols are of
secondary importance for our purposes.

A. Analytical expression for decoherence

The dephasing dynamics of a spin 1/2 subjected to a
classical O-U noise field B(t) can be studied analytically. The
transverse spin component precesses around the z axis, and
is rotated by an angle �(T ) = ∫ T

0 B(t)dt at time t = T , so
that the spin components along x and y are determined by
〈cos �(T )〉 and 〈sin �(T )〉, where the angular brackets denote
the averaging over all realizations of the O-U process. Note that
in this section, the static detuning Bdtn and the static hyperfine
field are neglected: For perfect DD pulses, these static fields
are completely removed by a single-pulse spin echo, and by
any DD sequence.

For an O-U process with zero mean, 〈sin �〉 = 0, so that
the decoherence leads only to the decay of the initial spin
component, without extra rotation, that is, if the central spin
was prepared at t = 0 along the x axis (SX = 1, and SY =
SZ = 0), then SY = SZ = 0 at all times, while

SX(T ) = F (T ) =
〈
exp

(
−i

∫ T

0
B(t)dt

)〉
. (5)

The decay function F (T ) in the case of free evolution (no DD
pulses) can be easily calculated:81,82 The transition probability
for a O-U process has Gaussian form, so the functional in
the equation above is a standard Gaussian path integral. For
a slowly fluctuating bath, with bτc � 1, the free decay of the
central spin has Gaussian form F (T ) = exp (−b2T 2/2).

In a spin echo experiment, after free evolution during
time τ , a π pulse is applied, flipping the sign of the z

component of the central spin, and the sign of the phase
accumulation is inverted. The resulting change in the dynamics
can be described by correspondingly rotating the coordinate
frame and inverting the sign of the field B(t).32,52 Thus,
for a single-pulse Hahn echo experiment, of total duration
T = 2τ , the decay of the transversal component of the
central spin is determined by the functional81 E(2τ ) =
〈exp (−i

∫ τ

0 B(t)dt + i
∫ 2τ

τ
B(t)dt)〉. This is another Gaussian

path integral which can be calculated explicitly, and for a slow

bath (bτc � 1) has a form E(T = 2τ ) = exp (−T/T2)3, where
the echo decay time,

T2 =
(

12τc

b2

)1/3

. (6)

Our experiments on the Ramsey fringes decay (measuring the
free dephasing rate) and on the Hahn spin echo decay demon-
strate the theoretically predicted behavior. The measurements
of the free decay time (T ∗

2 = 0.4 μs) and the echo decay time
(T2 = 2.8 μs) allow one to determine the bath parameters:

τc = 25 μs
(7)

b = 3.6 μs−1 .

These values agree with the parameters measured later in
Ref. 99. The EPR measurements, performed on a macroscopic
ensemble of NV centers, cannot be used to extract the value
of b for a single NV center:88 Even in a macroscopically
homogeneous sample, the distribution of b for different NV
centers is very broad (has a heavy power-law tail), and the
width of the EPR line can serve only as a crude order-of-
magnitude estimate for some “typical” (in a loose sense) NV
center. With this precaution, we note that the value of b given
above is compatible with the nominal concentration of P1
centers (200 ppm), which is directly related to their EPR
linewidth.100

When the central spin is subjected to a DD sequence,
multiple π pulses are applied sequentially, and each pulse
inverts the sign of Sz

0. As for the spin echo, the spin evolution is
conveniently described in the toggling coordinate frame, which
is rotated along with each spin rotation; correspondingly,
the sign of the field B(t) is inverted with each pulse.32

Transforming the spin evolution in the toggling frame back
to the standard rotating frame is not difficult: For ideal pulse
it is enough to note that the two coordinate frames coincide
at the end of every DD period. The spin evolution in this
toggling coordinate frame remains essentially the same: The
spin rotates in the x-y plane, and the total rotation angle
is �̃ = ∫ T

0 ξ (t)B(t)dt , where ξ (t) is the time-domain filter
function, which takes into account the impact of the pulses:
ξ (0) = +1, and changes sign every time when a π pulse is
applied to the central spin.

Again, for an O-U process with zero mean, the decoherence
in the presence of the DD pulses is reduced to the decay of the
transverse spin component, without extra rotation. Considering
the evolution of the central spin during the time interval
[0,T ], the decoupling fidelity (equal to the transverse spin
component) is

S(T ) =
〈
exp

(
− i

∫ T

0
ξ (s)B(s)ds

)〉
, (8)

where we omitted the index of the transverse component as
irrelevant. For an O-U process B(t), the averaging in Eq. (8)
can then be carried out explicitly:82 This is the characteristic
functional of an O-U process, which can be rewritten in the
form,

S(T ) = exp

[
− b2

∫ T

0
e−Rsp(s)ds

]
= exp [−b2W (T )], (9)
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where R ≡ 1/τc, and the convolution integral p(s) =∫ T −s

0 ξ (t)ξ (t + s)dt contains all relevant information about
the pulse sequence.

We consider a decoupling sequence containing Nc cycles,
each of duration Tc, so that T = NcTc. In this case, it is
convenient to define a filter function ξ0(t) for a single period:
This function is zero at t < 0, equal to + 1 at t = 0, changes
sign every time a pulse is applied, and becomes zero at
t > Tc. Then, the total function ξ (t) for the kth cycle equals
to ξ0(t − (k − 1)Tc), and ξ0(t) therefore fully characterizes the
pulse sequence. By calculating p(s) in each cycle, and taking
advantage of the periodicity of the sequence, the fidelity decay
can be derived as

W (T ) = 
N (Q11 + Q12) − PNQ12, (10)

where 
N and PN are Nc dependent constants given in Eq. (A7)
in Appendix A and the integrals,

Q11 =
∫ Tc

0
e−Rsq11(s)ds,

(11)

Q12 =
∫ Tc

0
e−Rsq11(Tc − s)ds,

with q11(s) = ∫ Tc−s

0 ξ0(t)ξ0(t + s)dt . See Appendix A for the
details of the derivation.

For any DD sequence with a periodical structure, it is
then straightforward to calculate the decay of the decoupling
fidelity, Eq. (10), starting from the specific filter function, ξ0(t).

Note that in the above derivation, since we are dealing with
pure dephasing and ideal pulses, the axes of the π pulses in the
DD sequence do not show up in the filter function. Therefore
a π pulse about the x axis (denoted as πX) and that about the y

axis (πY) result in the same decoupling performance. It is the
timing of the pulses that matters.

B. DD protocols based on equidistant pulses

We now study the performance of PDD XY, its concatenated
version CDD, and its symmetrized version, SDD XY. While
the results here are equally applicable to the corresponding
single-axis protocols, the two-axis control is the main focus of
our study.

Within the PDD XY protocol, the sequence of pulses d-
πX-d-πY-d-πX-d-πY is repeated many times, where d denotes
a free evolution of duration τ . Following the procedure in
Sec. IV A, we can derive the dephasing exponent WPDD(t). In
our experiments, the typical interpulse delay is ∼ 0.02–1 μs,
which is much shorter than the bath correlation time, τc =
25 μs. We thus focus on the case Rτ � 1. When the number
of cycles Nc is small, RT = NcRTc � 1 (we will refer to this
regime as short times), the decoupling fidelity decays as

S(T ) = exp

[
− 4

N2
d

(
T

T2

)3]
, (12)

where T2 is the spin echo decay time, Eq. (6), and Nd is the total
number of the inter-pulse delays (equal to the total number of
pulses). When Nc becomes so large that RT = RNcTc � 1
(we refer to this regime as long times), the decay rate becomes

0

 0.5
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FIG. 1. (Color online) Simulation results for the decoupling
fidelity as a function of the number Nd of the interpulse delays in
PDD XY (solid black line). The dashed red line corresponds to the
analytical expression (12) for small Nd , and the dotted blue line
corresponds to the expression (13) for large Nd . The duration of the
inter-pulse delay is τ = 0.6 μs. The inset shows the same curves
with logarithmic scale in the vertical axis, demonstrating that the
solid black line (simulation results) is parallel to the dotted blue line
(analytics for long times) after Nd ∼ 20 [i.e., the decoherence rate
corresponds to the long-time regime, Eq. (13)].

four times smaller:

S(T ) = exp

[
− 1

N2
d

(
T

T2

)3]
. (13)

Thus, for PDD XY, as the number of period increases, the
decay slows down (detailed derivation is in Appendix A 1).
This feature is shown in Fig. 1, where numerical results for S(t)
are shown as a function of Nd , with fixed interpulse delay τ .

We now consider concatenated protocols based on PDD
XY. The concatenated sequence of level �, which we denote
as CDD�, is constructed recursively as35,56

(CDD�−1) − πX − (CDD�−1) − πY − (CDD�−1) − πX

−(CDD�−1) − πY, (14)

starting from PDD XY as the first-level CDD sequence.
Extension to larger times can be achieved either by increasing
the concatenation level, or by periodically repeating CDD of
a fixed level, since the length of the CDD period Tc increases
exponentially with �. The detailed analysis of this family of
protocols is given in Appendix A 1: It is performed recursively,
and the decay rate for CDD� can be calculated from that
of CDD�−1. In the most experimentally relevant case, when
RTc � 1, we find that for all concatenation levels, the decay
rate for both short times and long times are the same, equal to
the short-time decay rate of PDD XY, Eq. (12). This behavior
is exactly the opposite of a general expectation based on ME,
that by increasing the CDD order, the decoupling performance
should improve. The origin of such discrepancy is presented
later in Sec. IV C.

The symmetrized protocol, SDD XY, is constructed by
taking the PDD XY period, and adding to it the time-inverted
PDD XY period, producing the sequence with the period,

(d-πX-d-πY-d-πX-d-πY)-(πY-d-πX-d-πY-d-πX-d), (15)
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WANG, DE LANGE, RISTÈ, HANSON, AND DOBROVITSKI PHYSICAL REVIEW B 85, 155204 (2012)

0

 0.5

1

0  10  20  30  40

S
(t

)

t (µs)

PDD XY
CDD2

SDD XY

-12

-8

-4

0

4

-2 -1 0 1 2 3

ln
[-

ln
(S

(t
))

]
ln [t]

FIG. 2. (Color online) Simulation results for the decoupling
fidelity as a function of the total evolution time for PDD XY
(blue crosses), CDD2 (green triangles), and SDD XY (red circles).
In all protocols Nd = 16, and τ is increasing with t . The two
latter sequences produce identical results. The black line shows the
analytical results, Eq. (12). Inset shows the same results in log-log
scale.

which has exactly the same timing of the pulses as the
half-period of CDD2 (since for ideal pulses πYπY = 1). The
filter function for SDD XY therefore coincides with the filter
function of CDD2, and so is the decoupling fidelity. Figure 2
shows the numerical results for the performance of PDD XY,
CDD2, and SDD XY, each with Nd = 16. All curves agree
with the analytical expression Eq. (12).

C. Sequences based on CPMG timing

The period of the CPMG sequence is d-π -d-d-π -d. The
sequence XY4 has the same pulse timing, but is based on the
two-axis control:53

d-πX-d-d-πY-d-d-πX-d-d-πY-d. (16)

Since we are considering ideal pulses, and limited to dephasing
of the central spin, these two sequences are equivalent.
Detailed analysis (in Appendix A 2) shows that the decay rate
of the fidelity for both short and long times is the same. If we
denote T1/e as the 1/e decay time of the decoupling fidelity,
then for a sequence with CPMG timing, the fidelity decays as

S(T ) = exp

[
−

(
T

T1/e

)3]
, (17)

with

T1/e =
(

Nd

2

)2/3

T2. (18)

This is exactly the scaling behavior of the decay time observed
in our experiments. Figure 3(a) shows the experimental data
and the simulation results for Nd = 8,16,32, which are in
excellent agreement with Eq. (17).

Let us compare XY4 with PDD XY. If we take the interpulse
delays τPDD = 2τXY4, then the only difference between the two
sequences will be the very first and the very last segments, each
of duration τXY4. Equation (17) is then equivalent to Eq. (13),
taking into account that 2NPDD

d = NXY4
d . Therefore, at short

times, the decay for the PDD XY sequence is four times faster
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FIG. 3. (Color online) Decoupling fidelity as a function of the
total evolution time. (a) XY4 for Nd = 8,16 and 32 (red, green, and
blue lines and symbols, correspondingly). Solid lines are analytical
results obtained from Eq. (17), the dashed lines are numerical results,
and the symbols are the experimental data. (b) Numerical results for
XY4 with eight periods (red squares), CDDXY4

2 (green circles), and
XY8 (blue triangles) protocols with four periods. The number of
delays is 64 for all protocols. The black line shows the analytical
prediction of Eq. (17). As predicted, all three sequences demonstrate
the same performance.

than for XY4. Note that this difference is the result of only
two segments at the very beginning and at the very end of the
sequence. For long times (large Nd ), the decay rates of PDD
XY and XY4 are the same, but the absolute value of the DD
fidelity is exponentially higher for the CPMG-timed sequence
XY4.

The symmetrized version of the XY4 sequence, often
referred to as XY8,53 has a period,

(d-πX-d-d-πY-d-d-πX-d-d-πY-d)

−(d-πY-d-d-πX-d-d-πY-d-d-πX-d). (19)

Since its filter function is the same as XY4, the fidelity decay is
also the same. For the concatenated version of XY4, the short-
time and long-time decay rates in CDDXY4

� for any level are the
same, equal to that in XY4 (see Appendix A 2). Figure 3(b)
shows the simulation results for XY4, XY8, and CDDXY4

2 . The
number of delays in all sequences is the same: Nd = 64 and
the results are in agreement with Eq. (17).

Therefore, we arrive at the conclusion that for the spin
bath considered in our study (Gaussian Markovian noise field
with the Lorentzian spectrum), the performance of both the
PDD- and the CPMG-based sequences is not improved neither
by symmetrization or concatenation, and the simple XY4
sequence provides the optimal choice for experiments. This
result may look somewhat discouraging, and is in contrast
with the standard qualitative expectation, based on the Magnus
expansion, that the higher-order sequences should generally
provide better fidelity. It is also in clear contrast with the ME
prediction that the decay exponent W (T ) for symmetrized
sequences should contain only even-order terms, while our
calculations produce W (T ) ∼ T 3. The problem here is the
inapplicability of the Magnus expansion. The spectral density
of our spin bath has a Lorentzian shape, ∼ 1/(R2 + ω2), which
has a formally infinite second moment. In terms of Magnus
expansion, this corresponds to a formally infinite ||HB ||. In
reality, of course, the power spectrum of the spin bath is limited
by the fastest possible flip-flop rate between two bath spins,
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which is achieved when the two P1 centers are located at the
nearest sites in the diamond lattice, but this frequency is in
the GHz range, and is far above all other time scales relevant
for decoherence. This situation is in sharp contrast with, for
example, decoherence of the electron spin by a bath of nuclear
spins in quantum dots.59,60,87,90,92–95

D. Aperiodic decoupling sequences

In the Uhrig DD scheme of level �, denoted as UDD�,
a sequence of π pulses rotate the spin about the same axis
(taken here as x), and the pulses are applied at times,

tj = T sin2

(
jπ

2Np + 2

)
, (20)

where T is the total evolution time, and j = 1,2, . . . ,� for
even � and j = 1,2, . . . ,� + 1 for odd �. The generalization
of the UDD for the case of the two-axis control, the QDD
sequence,41 is composed of two nested UDD sequences, during
which the central spin is rotated about two perpendicular
axes, respectively; to be concrete, here we consider the QDD
sequence with πX pulses in the outer hierarchical level, and
πY pulses in the inner hierarchical level. Thus, for odd level
� = 2n − 1, the QDD� sequence is

UDD(Y)
� (τ1)-πX-UDD(Y)

� (τ2)-πX · · · -UDD(Y)
� (τ�+1)-πX,

(21)

where
∑�+1

j=1 τj = T and UDD(Y)
� (τj ) denotes UDD� based on

πY pulses with evolution time τj . The division of the total
time T into intervals τj satisfies the same rule as for UDD
(i.e., τj = tj − tj−1), with tj given by Eq. (20). The number of
pulses in such a QDD sequence is Np = (� + 1)(� + 2). For
even level � = 2n, the QDD� sequence is

UDD(Y)
� (τ1)-πX- · · · -UDD(Y)

� (τ�)-πX-UDD(Y)
� (τ�+1), (22)

and the number of pulses is Np = �(� + 2).
The analysis in Sec. IV A is not applicable to UDD and

QDD due to the lack of periodicity in these sequences. We
perform only numerical study on these two sequences. Figure 4
shows the decoupling performance of UDD, in comparison
with XY4 with the same number of pulses, Np = 8,16. For

0

 0.5

1

0  10  20  30  40

S
(t

)

t (µs)

(a)

UDD8
UDD16

0

 0.5

1

0  10  20  30

S
(t

)

t (µs)

(b)

UDD8
XY4, Np=8

UDD16
XY4, Np=16

FIG. 4. (Color online) (a) Decoupling fidelity as a function of the
total evolution time for UDD with Np = 8 and Np = 16 pulses (red
and blue, respectively). Dots are the experimental data, and lines are
simulation results. (b) Comparison of the simulation results for UDD
(solid lines) and XY4 sequence (dashed lines) with the same number
of pulses (red for Np = 8 and blue for Np = 16).
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FIG. 5. (Color online) Simulation results. (a) Decoupling fidelity
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UDD48, and QDD6. Each sequence has Np = 48 pulses. (b) The
decay time T1/e, as a function of the number of pulses Np for XY4
(solid line), UDD (dotted line), and QDD (dash-dotted line). Solid
line shows the scaling relation given by Eq. (18), with T2 fitted to be
2.73 μs.

both cases, the fidelity decay in UDD is faster than in XY4.
The fidelity decay in QDD is even faster than UDD, given
that the number of pulses is the same [see Fig. 5(a)]. The
1/e decay time of UDD, XY4 (CPMG), and QDD are shown
in Fig. 5(b). For all numbers of pulses we have studied, the
XY4 sequence performs better than UDD and QDD. Since the
noise field B(t) generated by the O-U process has Lorentzian
spectral density without sharp cutoff, our results agree with
the existing knowledge,37,49,57–60,62 that for the bath spectrum
with a soft cutoff, the pulse sequences with CPMG timing
outperform UDD.

V. EFFECTS OF THE PULSE ERROR ACCUMULATION

In this section, we focus on the effect of the pulse error
accumulation for the DD sequences introduced above.

A. Model for pulse error description

In our analysis, we assume that the control pulses have
infinitely small duration, and, therefore, treat them as rotation
operators. The imperfections in the pulses are taken into
account by considering the errors in the rotation axis and
rotation angles.44,69,78 For instance, for a nominal π pulse
about the x axis (the πX pulse), the actual evolution of the
central spin is expressed as

UX = exp [−i(π + εx)(S · 
n)], (23)

where 
n = (
√

1 − n2
y − n2

z ,ny ,nz) is the rotation axis which
slightly deviates from the x axis (ny and nz are small), and
εx is the error in the rotation angle. Similarly, the rotation
operator for a nominally π pulse about the y axis (the πY

pulse) is

UY = exp [−i(π + εy)(S · 
m)], (24)

where εy is the rotation angle error and 
m =
(mx,

√
1 − m2

x − m2
z,mz) is the actual rotation axis.

In the studies below, the pulse errors εx , εy , ny,mx are kept
constant for all experimental runs (∼ 106 in our experiments),
and during each single run. This corresponds to an excellent
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stability of the pulse-generating hardware used in our exper-
iments. However, the components nz and mz or the rotation
axes are noticeably affected by the hyperfine coupling A0S

zI z
0 .

Correspondingly, these two errors are treated as static during
each run, but have different values for different runs, depending
on the values of I z

0 = 1,0, − 1 as nz = n0I
z
0 and mz = m0I

z
0 .

The parameters taken in the simulation are εx = εy = −0.02,
mx = 0.005, n0 = m0 = 0.05, and ny = 0, being determined
from the bootstrap protocol for pulse characterization.69

Note that for imperfect pulses, it becomes important how
the π rotations are implemented, via πX or via πY pulses.
Therefore, in contrast with the previous section, the sequences
with the single-axis and with the two-axis control will be
considered separately.

B. CPMG sequence

The evolution operator for a period of the CPMG sequence
is

UCPMG = Ud(τ )UXUd(τ )Ud(τ )UXUd(τ ). (25)

To gain qualitative insight into the problem of the pulse error
accumulation, let us assume that the noise field B is static.
Keeping only the terms of the first order in the pulse errors,

UCPMG = −1 + i(εx cos φd + 2nz sin φd)σx, (26)

where φd = Bτ is the noise phase accumulated during an
interpulse delay. For perfect pulses, the evolution operator
is identity, and the quantum state of the central spin is
preserved perfectly for static noise. For imperfect πX pulses,
the evolution during a CPMG period corresponds to a spin
rotation about the x axis by angle 2π + θCPMG with θCPMG =
−2(εx cos φd + 2nz sin φd). Repeating Np periods, the overall
evolution of the central spin is equivalent to a rotation about
the same axis by an angle NpθCPMG.

To examine how different spin states are preserved in DD,
we study two perpendicular spin components SX and SY. Since
the x component is not affected by rotations about the x axis,
the state |X〉 is preserved very well, being spoiled only by
the higher-order terms. For the initial state |Y 〉, in a single
realization of B, the y component is

SY,single = cos θCPMG, (27)

that is, the decoupling fidelity oscillates at a frequency
determined by the pulse errors. After averaging SY,single over
different realizations of B, the fidelity decays due to the pulse
error accumulation, as known from the early days of magnetic
resonance52 [i.e., the spin component SX is well preserved in a
CPMG sequence, while SY (when it becomes the CP sequence)
is sensitive to the pulse errors εx and nz].

To study the experimental case of the dynamical noise
[whose parameters are given by Eq. (7)] in the presence of
the pulse errors, we performed numerical simulations. The
results are shown in Fig. 6 for Np = 16 pulses applied to the
states |X〉 and |Y 〉. The total evolution time is varying from 0
to 15 μs. The simulations agree with the experimental results.

C. Sequences based on PDD XY and XY4

Analysis of the pulse error accumulation for the PDD XY
sequence, in the case of static noise, has been carried out in
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FIG. 6. (Color online) Decoupling fidelity of the CPMG sequence
as a function of the total evolution time for initial states |X〉 (red
symbols and lines) and |Y 〉 (blue symbols and lines). The number of
pulses is Np = 16. Broken lines are the simulation results; the dots
are the experimental results. The black solid line shows the results
for ideal pulses.

Ref. 44, and here we only briefly remind the main results. The
evolution operator for a single period, to the first order in the
pulse errors, is

UXY = −1 − 2i(mx + ny)σ z, (28)

corresponding to a spin rotation about the z axis by the
angle 2π + 4(mx + ny). Thus, only the in-plane components
of the rotation axis ny and mx accumulate in the course of
decoupling. In experiments, these errors can be minimized
using appropriate pulse tuning.65–70 Moreover, in Eq. (28)
the evolution operators are independent of φd , thus being
insensitive to the resonance offset, the value of B, and the
duration of the interpulse delay, τ .

For the XY4 sequence, in spite of different timing, the pulse
errors accumulate in the same way (in the first order in the pulse
errors), and the evolution operator for XY4 is also given by
Eq. (28) in the case of static noise. Therefore, XY4 is also
very robust with respect to most pulse errors. In addition, due
to better pulse timing, it demonstrates very good performance
in the case of dynamic noise, as shown in Sec. IV. Thus, we
expect that this sequence is close to optimal for experiments: It
combines simplicity, good scaling properties, and robustness
to the pulse imperfections.

Figure 7 shows the decoupling fidelity as a function of
the total evolution time for the XY4 sequence with imperfect
pulses. The results for the initial states |X〉 and |Y 〉 with Np =
8 and Np = 72 pulses are shown. Since the in-plane pulse
errors in our experiments are very small, XY4 serves as a
good decoupling sequence for the NV center spin in a spin
bath composed of P1 centers.

The symmetrized version of PDD XY, SDD XY demon-
strates worse scaling properties in the case of perfect pulses.
However, it has advantages when the pulses are imperfect,
as the first-order terms in the pulse errors disappear in the
evolution operator. In the case of static noise field, to the
second order,

USDDXY = 1 + 2i(mx + ny)εyσ
x

+ 2i(mx + ny)(εx cos φd + 2nz sin φd)σy. (29)

The evolution operator for the symmetrized version of XY4,
the XY8 sequence, has even more symmetric form (again, for
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FIG. 7. (Color online) Decoupling fidelity of the XY4 sequence
as a function of the total evolution time for the initial states |X〉 (red
symbols and lines) and |Y 〉 (blue symbols and lines), in the presence
of the pulse errors. The broken lines are the simulation results, and
the dots are the experimental data. The black solid line shows the
results for ideal pulses. (a) Np = 8. (b) Np = 72.

static noise):

UXY8 = 1 + 2i(mx + ny)(εy cos φd + 2mz sin φd)σx

+2i(mx + ny)(εx cos φd + 2nz sin φd)σy. (30)

Thus, XY8 presents a good choice for the experimentalist
when the pulse errors are not very small: This sequence is still
very simple to program, and it has the same good performance
as XY4, but is sensitive to the pulse errors only in the second
order.

The error accumulation in the concatenated version of PDD
XY has been analyzed before.35,44,56 An important feature is
that CDD has an error-correction structure. For the static noise,
in the first order, the pulse errors do not accumulate as the
concatenation level increases, although the number of pulses
increases exponentially. For the concatenated sequences based
on XY4, we found that the same feature holds. The evolution
operator for CDDXY4

� is still described by Eq. (28) for any
�. While the leading terms are of the first order in the pulse
errors, they do not accumulate as the concatenation order or
the number of periods increase.

Figure 8 shows the simulation results for the dynamic
noise, with the parameters given by Eq. (7), for SDD XY
(two periods), CDD2, XY8 (four periods) and CDDXY4

2 with
pulse number Np = 16,20,32, and 36, respectively. Due to
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FIG. 8. (Color online) Decoupling fidelity as a function of the
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the pulse errors. The results are shown for SDD XY (two periods)
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2

sequences (b) with the number of pulses Np = 16,20,32, and 36,
respectively. Black solid line shows the results for ideal pulses.

smallness of mx and ny in our simulations, the pulse errors
have little effect on the decoupling fidelity, and all sequences
perform almost as if there were no pulse errors.

D. UDD and QDD

Since the interpulse delay in UDD is not uniform, we use
only the total evolution time T in the following analysis. As
above, we present analytical results only for the case of static
noise, while the simulations show the results for the dynamical
spin bath characterized by Eq. (7).

If the level of UDD is even, � = 2n, then the pulse number
is equal to �. The evolution operator for a single electron spin,
to first order in the pulse errors, is

UUDD
2n = (−1)n[1 − iσ xθx], (31)

where θx is a linear combination of pulse errors εx and nz, with
coefficients depending on n and BT . The spin is thus rotated
about the x axis by an angle 2θx , which is dependent on εx and
nz. Comparing to the CPMG sequence analyzed in Sec. V B,
we see that for UDD with an even number of the πX pulses,
the spin state |X〉 is well preserved while the fidelity for the
|Y 〉 state is strongly affected by the pulse error accumulation,
and the influencing factors are the rotation angle error and
the z component of the rotation axis error. Figure 9(a) shows
the decoupling performance of UDD16 for the dynamical spin
bath.

For � = 2n − 1, the pulse number Np equals 2n (there is
a π pulse at the end of the whole evolution). The evolution
operator is then

UUDD
2n−1 = (−1)n(1 − iθnσ

x − iηnσ
y), (32)

where θn and ηn are linear combinations of εx and nz, with
coefficients depending on n and BT . This operator represents
a rotation in the x-y plane, with the axis depending on the
relative magnitudes of θn and ηn. If θn � ηn, then the axis is
closer to the x axis, so that SX is preserved better than SY (and
vice versa). We notice that in the limit T → 0, ηn vanishes,
hence the pulse error affects SX at larger times, while SY is
affected already at small times [see Fig. 9(b)].

In the limit T → 0, in which case the sequence is simply
successive pulses, the sequences with � = 2n − 1 and � = 2n

are the same, and the evolution operator in the first order
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involves only εx :

lim
T →0

UUDD
� = (−1)n(1 − inεxσ

x), (33)

which represents a rotation about the x axis by an angle 2nεx .
Hence for UDD sequences of large level, even for small total
evolution time, the accumulation of pulse errors in the rotation
angle would lead to fidelity loss for the spin state |Y 〉.

Now we consider QDD sequences with πX pulses in the
outer hierarchical level, and πY pulses in the inner hierarchical
level in the presence of the pulse errors. The sequence of
QDD� with � = 2n − 1 is shown in Eq. (21) with pulse number
Np = (� + 1)(� + 2), and for � = 2n in Eq. (22) with pulse
number Np = �(� + 2).

In the limit T → 0, the evolution operators for QDD of
even and odd levels are

lim
T →0

U
QDD
2n = 1 − in(εxσ

x + εyσ
y), (34)

lim
T →0

U
QDD
2n−1 = (−1)n(1 − inεxσ

x). (35)

That is, for short total evolution time, in a sequence QDD2n,
the central spin rotates about an axis lying in the x-y plane.
Preservation of the spin states |X〉 and |Y 〉 is determined by the
relative magnitude of εx , and εy . If εx � εy , then |X〉 is better
preserved, and vice versa. In QDD2n−1, the spin evolution is a
rotation about the x axis by an angle nεx , hence |Y 〉 is better
preserved. Note that the rotation axis errors do not contribute
in first order to either even or odd level QDD for T → 0. The
above features for the initial fidelity loss are seen in Fig. 10,
where the simulation results of QDD3 (with 20 pulses) and
QDD6 (with 48 pulses) are shown for dynamical spin bath.
For QDD3, at short times, |X〉 is preserved somewhat better
than |Y 〉, due to the smallness of εx in our experiments. For
QDD6, |X〉 and |Y 〉 exhibit the same behavior at small times,
since we have εx = εy .

We did not perform analytical calculations for QDD with
finite T since the expansion of the evolution operator is rather
cumbersome. Compared to UDD protocol, QDD exhibits
much less sensitivity to initial states. In both QDD3 and QDD6,
the evolutions of SX and SY are close to those with ideal pulses.

To get a comprehensive summary of the behavior of
different DD protocols in the presence of pulse errors, Fig. 11
shows the simulation results for (1) XY4 with 12 periods,
(2) XY8 with six periods, (3) UDD48, and (4) QDD6. The
number of pulses is 48, the same for each sequence. Since SX
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FIG. 11. (Color online) Fidelity SY for the |Y 〉 initial state, for
different DD sequences in the presence of pulse errors. Results for
XY4 (red line and circles), XY8 (green line and crosses), UDD48

(blue line and dots), and QDD6 (magenta line and triangles) are
shown. Each sequence contains 48 pulses.

in all cases is only slightly affected by the pulse errors, we plot
only the fidelity SY to compare different DD protocols. The
sequence XY4, which is sensitive to the in-plane rotation axis
errors, mx and ny , exhibits very small initial decay. Sequence
XY8, where the pulse errors are absent in the first order,
exhibits no visible effect of the errors, and coincides with the
curve for ideal pulses. In the case of UDD based on πX pulses,
the state |Y 〉 is rapidly destroyed by the error accumulation,
as expected. In QDD6, |Y 〉 is little affected by the pulse errors
[see Fig. 10(b)], and hence is much better preserved than in
UDD48, but its performance in the case of the O-U noise
is worse in comparison with XY4 and XY8. Moreover, the
leading influencing pulse errors for different DD sequences
are summarized in Table. I.

As a result, we come to the following conclusion. In the
realistic case of the dynamical spin bath (O-U noise) and
imperfect pulses, XY4 and XY8 sequences would be the
best choices. These two have the same pulse timing, but the
accumulation of pulse errors are better suppressed in the latter.

VI. DISCUSSION OF THE INTERNAL STRUCTURE OF
THE SPIN BATH COMPOSED OF P1 CENTERS

In the above discussions, we approximated the whole spin
bath as a random noise field B(t). A closer examination of
the spin bath reveals that, with the static field applied along
the symmetry axis of the NV center, the ESR spectrum of the
P1 centers is composed of six Lorentzian lines. Thus, the NV
center is decohered by six different baths, each one described
via its own O-U process. Here we demonstrate that the main
conclusions drawn above remain valid.

Each P1 center is composed of an electron spin Sk = 1/2
and a nuclear spin Ik = 1 (14N nucleus) coupled via hyperfine
interaction. The symmetry of this coupling, and the orientation
of the nucleus’ quadrupolar axis, are determined by the Jahn-
Teller distortion at a given P1 location: This distortion reduces
the original (local) Td symmetry of the defect to C3v . Thus, the
hyperfine and the quadrupolar Hamiltonians acquire uniaxial
symmetry. The symmetry axis is oriented along one of the
four 〈111〉 directions in the diamond lattice. But the external
static field applied along the [111] axis separates this direction
from the other three 〈111〉 axes (which remain equivalent
between themselves). Correspondingly, all P1 centers can be
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TABLE I. The pulse errors influencing the DD fidelity in the first order for the initial states |X〉 and |Y 〉, for the corresponding spin
components SX and SY .

CPMG XY,XY4 UDDa (even �) (odd �) QDD(T → 0)b (even �) (odd �) SDD,XY8 CDD (XY, XY4)

SX 0 mx , ny 0 εx , nz εx , εy 0 0 mx , ny

SY εx , nz mx , ny εx , nz εx , nz εx , εy εx 0 mx , ny

aUDD based on πX pulses.
bQDD with πX pulses in the outer hierarchical level, and πY pulses in the inner hierarchical level.

categorized into two types. Type 1 has its symmetry axis along
[111], and type 2 has its symmetry axis along any of [111̄],
[11̄1], and [1̄11]. The Hamiltonian for a single P1 center of
type 1 is25

Ht1 = B0S
z
k + AzS

z
kI

z
k + Ax

(
Sx

k I x
k + S

y

k I
y

k

) + P (I z
k )2,

(36)

where Az = 114 MHz, and Ax = 81.3 MHz are the hyperfine
couplings along and perpendicular to the symmetry axis of
the P1 defect, and P = −4 MHz is the quadrupolar coupling
constant. The transition frequencies between different pairs of
eigenstates for Hamiltonian Eq. (36) can then be calculated.
For the static field B0 = 114 Gauss, the flip-flops between Sk

and Ik are greatly suppressed, and Sz
k and I z

k are good approx-
imate quantum numbers. The three main transitions for the
electron spin with the frequencies ν1,3,6 = 217,339,441 MHz
correspond to I z

k ≈ −1,0,1, respectively. Moreover, in this
region of external fields, for a P1 center of type 2, the
quantization axis is also close to z, and Sz and I z are
again good quantum numbers. The main transitions having
noticeable spectral weight, with the frequencies ν2,4,5 = 249,
347, and 417 MHz, also take place between the states with
approximately the same value of I z

k .
For a single P1 center spin, all the other surrounding P1

centers can be treated as a spin bath (made of six baths,
corresponding to six spectral lines), which create random field
along the quantization axis. Taking into account the statistical
properties of the dipolar coupling constants,81,88 one finds
that each spectral line of the bath has Lorentian form, and
is broadened due to the dipolar interaction between P1 centers
by ∼ 1 MHz.99 Each spectral line can be considered as a “spin
pocket,” and the flip-flops between the electron spins of two
P1 centers can happen only if both centers belong to the same
pocket (i.e., each spectral line creates its own noise field with
rms bk and the correlation decay rate Rk), with k = 1, . . . ,6.
In addition, we can include the quasistatic fluctuations in the
applied magnetic field B0, and describe it as another bath, with
rms b7 and R7 = 0.

The contributions from these independent noise fields to
the decay factor are additive, and for the free induction decay
and the spin echo we have81 F (T ) = exp[−T 2 ∑7

j=1 b2
j /2]

and E(T = 2τ ) = exp[−(2τ )3 ∑6
j=1 b2

jRj/12], respectively.
Similarly, using the results of Sec. IV, for the experimentally
optimal sequences XY4 and XY8 (and for the corresponding
concatenated protocols) we obtain the DD fidelity,

S(T ) = exp

[
− T 3

3N2
d

7∑
j=1

b2
jRj

]
, (37)

that is, the overall effect of seven independent spin baths is
equivalent to a single noise field with the parameters b and R

satisfying b2 = ∑7
j=1 b2

j and b2R = ∑7
j=1 b2

jRj . In a similar
fashion, the main results of Sec. V concerning the influence
of the pulse errors, also remain valid for several independent
baths.

VII. CONCLUSION

We studied dynamical decoupling (DD) protocols for the
nitrogen-vacancy center in diamond, which can be used to
decouple the electron spin of the NV center from the spin
bath of P1 centers. The decoupling efficiency of various DD
schemes is studied, including periodic sequences based on
single-axis and double-axis control pulses (CPMG, PDD XY,
and XY4), their concatenated and symmetrized versions, as
well as aperiodical sequences UDD and QDD.

For the periodical decoupling protocol PDD XY, the fidelity
at short times decays 4 times faster than at long times. In
the case of the XY4 protocol, the decay rate is uniform at
short and long times, and coincides with the slower (long-
time) decay rate of PDD XY sequence. For the spin bath
under consideration, concatenated and symmetrized versions
of the periodic sequences do not improve the decoupling
performance, and the aperiodical protocols UDD and QDD
exhibit inferior decoupling performance in comparison with
XY4.

We also studied the effect of the accumulation of small pulse
errors in the course of decoupling. For the DD sequences based
on single-axis control (CPMG and UDD), different initial
states are affected differently by the imperfect pulses, and
are mainly affected by the errors in the rotation angle and the z

component of the rotation axis. Thus, the single-axis protocols
preserve well only one component of the central spin. For the
sequences based on two-axis controls, XY and XY4, the errors
associated with the in-plane components of the rotation axes
affect the robustness of decoupling in the leading order. In our
experimental setup for the decoupling of NV center spin from
the P1 centers, such errors are small, ensuring robustness of
these protocols, and efficient preservation of all components
of the central spin. Similarly, the two-axis QDD protocols are
much less sensitive to the pulse errors than their single-axis
counterpart UDD.

Overall, for the experimentally relevant case of the dynam-
ical spin bath made of P1 centers, for realistically imperfect
pulses, the best choices for an experimentalist are XY4
and XY8 sequences. The former is simpler, but the latter
ensures better robustness with respect to the pulse errors.
Concatenation does not significantly improve performance,
but makes the sequences more complex.
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WANG, DE LANGE, RISTÈ, HANSON, AND DOBROVITSKI PHYSICAL REVIEW B 85, 155204 (2012)

ACKNOWLEDGMENTS

We thank M. J. Biercuk, P. Cappellaro, D. G. Cory, K.
Khodjasteh, and L. Viola for useful discussions. G.d.L., D.R.,
and R.H. acknowledge support from the DARPA QuEST
program, the Dutch Organization for Fundamental Research
on Matter (FOM), the Netherlands Organization for Scientific
Research (NWO), and the EU SOLID and DIAMANT pro-
grams. Work at Ames Laboratory was supported by the U.S.
Department of Energy–Basic Energy Sciences, under Contract
No. DE-AC02-07CH11358.

APPENDIX: DERIVATION FOR THE DECAY
OF DECOUPLING FIDELITY

We consider a decoupling sequence containing Nc cycles,
each of duration Tc (so that T = NcTc). Each cycle is
characterized by the filter function ξ0(t) defined in Sec. IV A.
Expressing S(T ) as

S(T ) = exp [−b2W (T )], (A1)

to calculate the decay exponent W (T ) = ∫ T

0 dse−Rsp(s), we
break the domain [0,T ] into Nc pieces of length Tc:

W (T ) =
Nc−1∑
m=0

∫ (m+1)Tc

mTc

e−Rsp(s)ds, (A2)

and calculate p(s) at each segment [mTc,(m + 1)Tc] sep-
arately. Expressing s = mTc + s ′ (with 0 < s ′ < Tc), and
taking into account that ξ (t) and ξ (t + s) overlap over Nc − m

full cycles, we have

p(s) = (N − m)[q11(s ′) + q12(s ′)] − q12(s ′), (A3)

where

q11(s ′) =
∫ Tc−s ′

0
ξ0(t)ξ0(t + s ′)dt,

(A4)
q12(s ′) = q11(Tc − s ′).

Substitute p(s) into Eq. (A2), using e−Rs = e−mRTc e−Rs ′
, we

obtain

W (T ) = 
N

∫ Tc

0
e−Rs ′

[q11(s ′) + q12(s ′)]ds ′

−PN

∫ Tc

0
e−Rs ′

q12(s ′)ds ′, (A5)

where

PN =
Nc−1∑
m=0

e−mRTc ,

(A6)


N =
Nc−1∑
m=0

(Nc − m)e−mRTc .

Here PN is a geometric progression and 
N = NcPN + 1
Tc

dPN

dR
.

We therefore have

PN = 1 − e−NcRTc

1 − e−RTc
,

(A7)


N = Nc − (Nc + 1)e−RTc + e−(Nc+1)RTc

(1 − e−RTc )2
.

With the integrals in Eq. (A5) expressed in terms of Q11 and
Q12 defined in Eq. (11), we obtain

W (T ) = [
N (Q11 + Q12) − PNQ12], (A8)

and the fidelity decay S(T ) is thus simplified to Eq. (10).
The integral Q12 can be conveniently calculated from Q11

as

Q12 = e−RTcQ̃11, (A9)

where Q̃11 denotes replacing R by −R in Q11. This relation
will be used repeatedly in the calculations for the fidelity decay
of specific pulse sequences.

We now calculate the decay rate W (t) for different DD
sequences. focusing on the experimentally interested case
RTc � 1, and examine behavior at short times RT � 1, and
long times RT � 1. In theses two limits, constants 
N and
PN have expressions,

PN = Nc,
(A10)


N = Nc(Nc + 1)/2,

and

PN = 1/(RTc),
(A11)


N = Nc/(RTc),

respectively.

1. Sequences based on PDD XY

In the sequence of PDD XY, the filter function has a period
of Tc = 2τ , and

ξ0(t) =
⎧⎨
⎩

+1, for τ > t � 0
−1, for 2τ � t � τ

0, otherwise.
(A12)

Note that the full cycle of the PDD XY sequence, defined
according to Ref. 32, is twice longer than the period of the
filter function ξ (t). We can take Tc = 2τ , and thus significantly
simplify the derivation, because we restrict ourselves to the
case of pure dephasing and ideal pulses.

The convolution integral is

q11(s) =
⎧⎨
⎩

2τ − 3s, for τ > s � 0
s − 2τ, for 2τ > s � τ

0, otherwise.
(A13)

The integrals can further be calculated as

Q11 = 1

R2
[2δ − 3 + 4e−δ − e−2δ],

(A14)
Q12 = 1

R2
[−1 + 4e−δ − (2δ + 3)e−2δ],

where δ = Rτ . Focused on the experimentally interested case
δ � 1, the decay exponent, expanded to order δ4, is

WPDD(T ) = 1

R2

[
2PN

3
δ3 +

(

N

3
− 5PN

6

)
δ4

]
. (A15)

At short times, the second term is negligible, and the decay
rate becomes

WPDD(T ) = 2Ncδ
3

3R2
, (A16)
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and the fidelity decays as Eq. (12), taking into account that
Nd = 2Nc for PDD XY. At long times, the decay rate is found
to be

WPDD(T ) = Ncδ
3

6R2
, (A17)

resulting in the fidelity decay as Eq. (13).
For the concatenated sequence CDD�, consider the filter

function for half a period, we found that the integrals Q11 and
Q12 for level � and level � − 1 are related as

Q
(�)
11 = (

2 − e−RT
(�−1)

0c

)
Q

(�−1)
11 − Q

(�−1)
12 , (A18)

where the superscripts denote the concatenation level and
T

(�−1)
0c is the duration of the full period of CDD�−1. The other

integral, Q
(�)
12 , can be obtained using Eq. (A9). We now derive

the decay exponent for CDD� based on PDD XY. The integrals
Q11 and Q12 for a full period of PDD XY can be obtained from
the quantities for half a period to be

Q
(1)
11 = 1

R2
[−7 + 4δ + 12eδ − 8e−2δ + 4e−3δ − e−4δ],

and

Q
(1)
12 = 1

R2
[−1 + 4e−δ − 8e−2δ + 12e−3δ − (4δ + 7)e−4δ].

Substituting these result into Eqs. (A18) and (A8), we obtain
the decay rate for CDD2. Limiting to the case RTc � 1, we
find that

Q
(2)
11 = 1

R2

[
8

3
(RTc)3 + o(R5τ 5)

]
,

(A19)

Q
(2)
12 = 1

R2

[
8

3
(RTc)3(−1 + RTc) + o(R5τ 5)

]
,

where Tc = 8τ for CDD2. Noticing Eqs. (A10) and (A11), we
find that for both short times (NcRTc � 1) and for long times
(NcRTc � 1) the decay rate is the same, equal to the short-time
decay rate of PDD XY, Eq. (A16), taking into account that the
half-period of CDD2 is four times as long as the half-period of
PDD XY. This analysis can be repeated inductively, in the same
manner, for any concatenation level � (starting from CDD�−1),
with the same result.

Note, however, that for CDD, since Tc grows exponentially
with �, the condition RTc � 1 will be violated for higher-
order CDDs, and the corresponding analysis is not applicable
anymore. However, for slow baths, the absolute value of the
DD fidelity will become only smaller in this case; for fast baths,
with RTc � 1, DD gives little improvement in any case.

2. Sequences based on XY4

For sequences with CPMG timing, we take Tc = 4τ and
the single-cycle filter function is

ξ0(t) =

⎧⎪⎨
⎪⎩

+1, for τ > t � 0
−1, for 3τ > t � τ

+1, for 4τ > t � 3τ

0, others.

(A20)

The convolution integral is then

q11(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4τ − 5s, for τ > s � 0
−s, for 2τ > s � τ

3s − 8τ, for 3τ > s � 2τ

4τ − s, for 4τ > s � 3τ

0, others.

(A21)

Q11 and Q12 can be correspondingly calculated as

Q11 = 1

R2
[4δ − 5 + 4(e−δ + e−2δ − e−3δ) + e−4δ],

Q12 = 1

R2
[1 − 4(e−δ − e−2δ − e−3δ) − (4δ + 5)e−4δ].

Limiting to the case δ � 1, at both short and long times,
the decay rate of the fidelity is found to be the same:

WXY4(T ) = 4Ncδ
3

3R2
. (A22)

Taking into consideration that Nd = 4Nc for XY4, we arrive
at the scaling relation Eq. (17).

For concatenated sequence CDDXY4
� , taking Tc to be half its

period, we found that general relation between integrals for
levels � and those for � − 1 holds as

Q�
11 = (

4 − e−RT
(�−1)

0c − 2e−2RT
(�−1)

0c + e−3RT
(�−1)

0c

)
Q

(�−1)
11

+ ( − 1 − 2e−RT
(�−1)

0c + e−2RT
(�−1)

0c

)
Q

(�−1)
12 . (A23)

Starting from XY4, decay rate for any higher level CDD can be
derived. Focusing on our interested case δ � 1, the integrals
for CDDXY4

� is found to be

Q11 = 8b(Rτ )3/R2 + o(R5τ 5), (A24)

where the terms of order R4τ 4 are absent, and

Q12 = 8b(−1 + RTc)(Rτ )3/R2 + o(R5τ 5). (A25)

Substituting these integrals into Eq. (A8), we find that at both
short and long times, the decay rates of CDDXY4

� and CDDXY4
�−1

are the same, equal to the decay rate of XY4, Eq. (A22), taking
into consideration the correct relation between Tc for different
concatenation levels.
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